A tiered approach to Monte Carlo sampling with self-consistent field potentials

被引:2
|
作者
Steele, Ryan P. [1 ]
Tully, John C. [2 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
[2] Yale Univ, Dept Chem, New Haven, CT 06405 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 135卷 / 18期
基金
美国国家科学基金会;
关键词
ab initio calculations; density functional theory; HF calculations; molecular configurations; Monte Carlo methods; SCF calculations; water; INITIO MOLECULAR-DYNAMICS; WATER DIMER; CONVERGENCE ACCELERATION; ORGANIC-MOLECULES; ORBITAL METHODS; ENERGY SURFACE; PATH-INTEGRALS; BASIS-SETS; SIMULATIONS; SYSTEMS;
D O I
10.1063/1.3660224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A "tiered" approach to Monte Carlo sampling of nuclear configurations is presented for ab initio, self-consistent field (SCF)-based potentials, including Hartree-Fock and density functional theory. Rather than Metropolis testing only the final SCF energy, individual cycle energies are tested in a tiered fashion, without approximation. Accordingly, rejected configurations are terminated early in the SCF procedure. The method is shown to properly obey detailed balance, and effective modifications are presented for cases in which the initial SCF guess is particularly poor. Demonstrations on simple systems are provided, including an assessment of the thermal properties of the neutral water dimer with B3LYP/6-31++G**. Cost analysis indicates a factor-of-two reduction in SCF cycles, which makes the method competitive with accelerated molecular dynamics sampling techniques, without the need for forces. (C) 2011 American Institute of Physics. [doi:10.1063/1.3660224]
引用
收藏
页数:10
相关论文
共 50 条
  • [1] MONTE-CARLO - SELF-CONSISTENT FIELD METHOD IN THE POLYELECTROLYTE THEORY
    VORONTSOVVELYAMINOV, PN
    LYUBARTSEV, AP
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 1989, 7 (03): : 739 - 747
  • [2] Self-consistent kinetic lattice Monte Carlo
    Horsfield, A
    Dunham, S
    Fujitani, H
    MULTISCALE MODELLING OF MATERIALS, 1999, 538 : 285 - 290
  • [3] Self-consistent kinetic lattice Monte Carlo
    Horsfield, Andrew
    Dunham, Scott
    Fujitani, Hideaki
    Materials Research Society Symposium - Proceedings, 1999, 538 : 285 - 290
  • [4] Wetting of polymer liquids:: Monte Carlo simulations and self-consistent field calculations
    Müller, M
    MacDowell, LG
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (19) : R609 - R653
  • [5] Monte Carlo simulation of amorphous systems with the fragment self-consistent field method
    Toth, G
    NaraySzabo, G
    Ferenczy, GG
    Csonka, G
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1997, 398 : 129 - 133
  • [6] Single-particle approach to self-consistent Monte Carlo device simulation
    Bufler, FM
    Zechner, C
    Schenk, A
    Fichtner, W
    IEICE TRANSACTIONS ON ELECTRONICS, 2003, E86C (03): : 308 - 313
  • [7] Thermally Self-Consistent Monte Carlo Device Simulations
    Pilgrim N.J.
    Batty W.
    Kelsall R.W.
    Journal of Computational Electronics, 2002, 1 (1-2) : 263 - 266
  • [8] Spherical brushes within spherical cavities: A self-consistent field and Monte Carlo study
    Cerda, Juan J.
    Sintes, Tomas
    Toral, Raul
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (13):
  • [9] MONTE-CARLO TEST OF THE SELF-CONSISTENT FIELD-THEORY OF A POLYMER BRUSH
    LAI, PY
    ZHULINA, EB
    JOURNAL DE PHYSIQUE II, 1992, 2 (03): : 547 - 560
  • [10] A Hybrid Monte Carlo Self-Consistent Field Model of Physical Gels of Telechelic Polymers
    Bergsma, J.
    Leermakers, F. A. M.
    Kleijn, J. M.
    van der Gucht, J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (12) : 6532 - 6543