Chaotic period-doubling and OGY control for the forced Duffing equation

被引:35
|
作者
Akhmet, M. U. [1 ]
Fen, M. O. [1 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
关键词
Duffing equation; Period-doubling cascade; OGY control method; Chaotic attractor; Lyapunov exponents; Pulse functions; SYNCHRONIZATION; BIFURCATIONS; DYNAMICS; OSCILLATOR; FEEDBACK; SPECTRA; SYSTEM; ORBITS;
D O I
10.1016/j.cnsns.2011.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Duffing equation forced with a pulse function, whose moments of discontinuity depend on the initial data. Existence of the chaos through period-doubling cascade is proved, and the OGY control method is used to stabilize the periodic solutions. Appropriate simulations of the chaos and stabilized periodic solutions are presented. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1929 / 1946
页数:18
相关论文
共 50 条
  • [41] The chaotic synchronization of a controlled pendulum with a periodically forced, damped Duffing oscillator
    Luo, Albert C. J.
    Min, Fuhong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) : 4704 - 4717
  • [42] Predicting tipping points of dynamical systems during a period-doubling route to chaos
    Nazarimehr, Fahimeh
    Jafari, Sajad
    Golpayegani, Seyed Mohammad Reze Hashemi
    Perc, Matjaz
    Sprott, Julien Clinton
    CHAOS, 2018, 28 (07)
  • [43] Spatiotemporal Period-Doubling Bifurcation in Mode-Locked Multimode Fiber Lasers
    Xiao, Xiaosheng
    Ding, Yihang
    Fan, Shuzheng
    Zhang, Xiaoguang
    Yang, Changxi
    ACS PHOTONICS, 2022, 9 (12) : 3974 - 3980
  • [44] New Period-Doubling and Equiperiod Bifurcations of the Reversible Area-Preserving Map
    Yamaguchi, Yoshihiro
    Tanikawa, Kiyotaka
    PROGRESS OF THEORETICAL PHYSICS, 2012, 128 (05): : 845 - 871
  • [45] Period-doubling bifurcation to chaos in a pure-sextic soliton fiber laser
    Chen, Lu-Hui
    Zhang, Ze-Xian
    Cai, Zhi-Jia
    Yang, Yi-Tao
    Liu, Jia-Hao
    Luo, Zhi-Chao
    INFRARED PHYSICS & TECHNOLOGY, 2023, 134
  • [46] BOUNDEDNESS AND STABILITY FOR THE DAMPED AND FORCED SINGLE WELL DUFFING EQUATION
    Fitouri, Cyrine
    Haraux, Alain
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (01) : 211 - 223
  • [47] The Onset of Chaos via Asymptotically Period-Doubling Cascade in Fractional Order Lorenz System
    Lin, Xiaofang
    Liao, Binghui
    Zeng, Caibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (13):
  • [48] DYNAMICS OF THE UNIVERSAL AREA-PRESERVING MAP ASSOCIATED WITH PERIOD-DOUBLING: STABLE SETS
    Gaidashev, Denis
    Johnson, Tomas
    JOURNAL OF MODERN DYNAMICS, 2009, 3 (04) : 555 - 587
  • [49] Prediction of period doubling bifurcations in harmonically forced memristor circuits
    Innocenti, Giacomo
    Di Marco, Mauro
    Forti, Mauro
    Tesi, Alberto
    NONLINEAR DYNAMICS, 2019, 96 (02) : 1169 - 1190
  • [50] Time-dependent regimes of a tourism-based social ecological system: Period-doubling route to chaos
    Lacitignola, D.
    Petrosillo, I.
    Zurlini, G.
    ECOLOGICAL COMPLEXITY, 2010, 7 (01) : 44 - 54