Chaotic period-doubling and OGY control for the forced Duffing equation

被引:35
作者
Akhmet, M. U. [1 ]
Fen, M. O. [1 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
关键词
Duffing equation; Period-doubling cascade; OGY control method; Chaotic attractor; Lyapunov exponents; Pulse functions; SYNCHRONIZATION; BIFURCATIONS; DYNAMICS; OSCILLATOR; FEEDBACK; SPECTRA; SYSTEM; ORBITS;
D O I
10.1016/j.cnsns.2011.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Duffing equation forced with a pulse function, whose moments of discontinuity depend on the initial data. Existence of the chaos through period-doubling cascade is proved, and the OGY control method is used to stabilize the periodic solutions. Appropriate simulations of the chaos and stabilized periodic solutions are presented. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1929 / 1946
页数:18
相关论文
共 101 条
[1]   The complex dynamics of the cardiovascular system [J].
Akhmet, M. U. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E1922-E1931
[2]   SHADOWING AND DYNAMICAL SYNTHESIS [J].
Akhmet, M. U. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (10) :3339-3346
[3]   DYNAMICAL SYNTHESIS OF QUASI-MINIMAL SETS [J].
Akhmet, M. U. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07) :2423-2427
[4]   Devaney's chaos of a relay system [J].
Akhmet, M. U. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1486-1493
[5]   Li-Yorke chaos in the system with impacts [J].
Akhmet, M. U. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) :804-810
[6]  
Alligood K. T., 1996, CHAOS
[7]   Dynamic separation of chaotic signals in the presence of noise [J].
Andreyev, YV ;
Dmitriev, AS ;
Efremova, EV .
PHYSICAL REVIEW E, 2002, 65 (04) :6
[8]  
[Anonymous], 1992, CHAOS SOLITFRACTALS
[9]  
[Anonymous], 1997, NONLINEAR OSCILLATIO
[10]  
[Anonymous], 2009, LECT NOTES APPL COMP