Nebular Spectroscopy of Kepler's Brightest Supernova

被引:29
作者
Dimitriadis, G. [1 ]
Rojas-Bravo, C. [1 ]
Kilpatrick, C. D. [1 ]
Foley, R. J. [1 ]
Piro, A. L. [2 ]
Brown, J. S. [1 ]
Guhathakurta, P. [1 ]
Quirk, A. C. N. [1 ]
Rest, A. [3 ,4 ]
Strampelli, G. M. [3 ,5 ]
Tucker, B. E. [6 ,7 ,8 ]
Villar, A. [9 ]
机构
[1] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA
[2] Observ Carnegie Inst Sci, 813 Santa Barbara St, Pasadena, CA 91101 USA
[3] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[5] Univ La Laguna, Calle Padre Herrera, San Cristbal La Laguna 38200, Santa Cruz De T, Spain
[6] Australian Natl Univ, Mt Stromlo Observ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[7] Australian Natl Univ, Natl Ctr Publ Awareness Sci, Canberra, ACT 2611, Australia
[8] ARC Ctr Excellence All Sky Astrophys 3 Dimens AST, Canberra, ACT, Australia
[9] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
关键词
supernovae: general; supernovae: individual (SN 2018oh); IA SUPERNOVAE; CIRCUMSTELLAR MATERIAL; SN; 2011FE; RISE-TIME; COMPANION; PROGENITOR; HYDROGEN; HELIUM; PHOTOMETRY; BINARIES;
D O I
10.3847/2041-8213/aaf9b1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present late-time (similar to 240-260 days after peak brightness) optical photometry and nebular (+236 and +264 days) spectroscopy of SN 2018oh, the brightest supernova (SN) Ia observed by the Kepler telescope. The Kepler/K2 30 minute cadence observations started days before explosion and continued past peak brightness. For several days after explosion, SN. 2018oh had blue " excess" flux in addition to a normal SN rise. The flux excess can be explained by the interaction between the SN and a Roche-lobe filling non-degenerate companion star. Such a scenario should also strip material from the companion star that would emit once the SN ejecta become optically thin, imprinting relatively narrow emission features in its nebular spectrum. We search our nebular spectra for signs of this interaction, including close examination of wavelengths of hydrogen and helium transitions, finding no significant narrow emission. We place upper limits on the luminosity of these features of 2.6, 2.9 and 2.1 x 10(37) erg s(-1) for Ha, He lambda 5875, and He lambda 6678, respectively. Assuming a simple model for the amount of swept-up material, we estimate upper mass limits for hydrogen of 5.4 x 10(-4) Me and helium of 4.7 x 10(-4) Me. Such stringent limits are unexpected for the companion-interaction scenario consistent with the early data. No known model can explain the excess flux, its blue color, and the lack of late-time narrow emission features.
引用
收藏
页数:8
相关论文
共 65 条
[1]  
Abbott T. M. C, 2018, ARXIV181102374
[2]  
[Anonymous], 2016, ARXIV161205240
[3]  
[Anonymous], 2015, ASCL1504004
[4]  
[Anonymous], TNSCR
[5]   TYPE-I SUPER-NOVAE .1. ANALYTIC SOLUTIONS FOR THE EARLY PART OF THE LIGHT-CURVE [J].
ARNETT, WD .
ASTROPHYSICAL JOURNAL, 1982, 253 (02) :785-797
[6]   A COMPACT DEGENERATE RIMARY-STAR PROGENITOR OF SN 2011fe [J].
Bloom, Joshua S. ;
Kasen, Daniel ;
Shen, Ken J. ;
Nugent, Peter E. ;
Butler, Nathaniel R. ;
Graham, Melissa L. ;
Howell, D. Andrew ;
Kolb, Ulrich ;
Holmes, Stefan ;
Haswell, Carole A. ;
Burwitz, Vadim ;
Rodriguez, Juan ;
Sullivan, Mark .
ASTROPHYSICAL JOURNAL LETTERS, 2012, 744 (02)
[7]   Imprints of the ejecta-companion interaction in Type Ia supernovae: main-sequence, subgiant, and red giant companions [J].
Boehner, P. ;
Plewa, T. ;
Langer, N. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (02) :2060-2075
[8]  
BOTYANSZKI J, 2018, APJ, V852, DOI [DOI 10.3847/2041-8213/AC116F, DOI 10.3847/2041-8213/AAA07B]
[9]  
Chambers K. C., 2016, ARXIV161205560
[10]   EARLY SUPERNOVA LUMINOSITY [J].
COLGATE, SA ;
MCKEE, C .
ASTROPHYSICAL JOURNAL, 1969, 157 (2P1) :623-&