Numerical approximation of anisotropic geometric evolution equations in the plane

被引:56
作者
Barrett, John W. [1 ]
Garcke, Harald [2 ]
Nuernberg, Robert [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Regensburg, Naturwissench Fak Math 1, D-93040 Regensburg, Germany
关键词
anisotropic surface diffusion; anisotropic mean curvature flow; crystalline surface energy; triple junctions; parametric finite elements; Schur complement; tangential movement;
D O I
10.1093/imanum/drm013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a variational formulation of fully anisotropic motion by surface diffusion and mean curvature flow, as well as related flows. The proposed scheme covers both the closed-curve case and the case of curves that are connected via triple junction points. On introducing a parametric finite-element approximation, we prove stability bounds and report on numerical experiments, including regularized crystalline mean curvature flow and regularized crystalline surface diffusion. The presented scheme has very good properties with respect to the distribution of mesh points and, if applicable, area conservation.
引用
收藏
页码:292 / 330
页数:39
相关论文
共 52 条
[1]   MULTIPHASE THERMOMECHANICS WITH INTERFACIAL STRUCTURE .2. EVOLUTION OF AN ISOTHERMAL INTERFACE [J].
ANGENENT, S ;
GURTIN, ME .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (04) :323-391
[2]  
[Anonymous], 1993, P S PURE MATH
[3]   Finite element method for epitaxial growth with thermodynamic boundary conditions [J].
Bänsch, E ;
Hausser, F ;
Voigt, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06) :2029-2046
[4]   A finite element method for surface diffusion:: the parametric case [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :321-343
[5]   On the variational approximation of combined second and fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03) :1006-1041
[6]   A parametric finite element method for fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 222 (01) :441-467
[7]  
Bellettini G., 1996, J. Hokkaido Math., V25, P537, DOI 10.14492/hokmj/1351516749
[8]   OVERVIEW NO-113 - SURFACE MOTION BY SURFACE-DIFFUSION [J].
CAHN, JW ;
TAYLOR, JE .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04) :1045-1063
[9]   VECTOR THERMODYNAMICS FOR ANISOTROPIC SURFACES .2. CURVED AND FACETED SURFACES [J].
CAHN, JW ;
HOFFMAN, DW .
ACTA METALLURGICA, 1974, 22 (10) :1205-1214
[10]  
Clarenz U., 2003, Geometric analysis and nonlinear partial differential equations, P217