High-performance gas-phase adsorption of benzene and toluene on activated carbon: response surface optimization, reusability, equilibrium, kinetic, and competitive adsorption studies

被引:72
作者
Baytar, Orhan [1 ]
Sahin, Omer [1 ]
Horoz, Sabit [2 ]
Kutluay, Sinan [1 ]
机构
[1] Siirt Univ, Dept Chem Engn, Siirt 56100, Turkey
[2] Siirt Univ, Dept Elect & Elect Engn, Siirt 56100, Turkey
关键词
Activated carbon; Benzene; Central composite design; Gas adsorption; Response surface methodology; Toluene; Volatile organic compounds; VOLATILE ORGANIC-COMPOUNDS; CENTRAL COMPOSITE DESIGN; AQUEOUS-SOLUTION; VOC ADSORPTION; WATER-VAPOR; RHODAMINE-B; REMOVAL; METHODOLOGY; ADSORBENT; DYE;
D O I
10.1007/s11356-020-08848-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, volatile organic compounds (VOCs) have become a group of major pollutants that endanger human health and the ecological environment. The main purpose of this study was to investigate the gas-phase adsorption processes of benzene and toluene, which are important VOCs, on the activated carbon (AC) produced from Elaeagnus angustifolia seeds by physical activation method. In this context, the central composite design (CCD) approach-based response surface methodology (RSM) was applied to examine and optimize the effects of process parameters on the adsorption of benzene and toluene by AC adsorbent. The characterization of the produced AC was performed by the Brunauer-Emmett-Teller surface area, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The optimum process parameters were achieved (adsorption time of 74.98 min, initial benzene concentration of 16.68 ppm, and temperature of 26.97 degrees C, and adsorption time of 73.26 min, initial toluene concentration of 18.46 ppm and temperature of 29.80 degrees C) for benzene and toluene, respectively. The maximum adsorption capacities of benzene and toluene on AC were determined to be 437.36 and 512.03 mg/g, respectively, under optimum parameters. The adsorption process kinetics and equilibrium isotherms were also evaluated. Besides, AC reusability studies were performed five times for the gas-phase adsorption and desorption of benzene and toluene. After five cycles, it was observed that the benzene and toluene adsorption capacity of the AC decreased slightly by 8.10% and 7.42%, respectively. The results revealed that the produced AC could be utilized successfully for the removal of benzene and toluene in the gas-phase adsorption systems because of its high surface area, high adsorption capacity, and high reusability performance. Furthermore, the adsorption processes of benzene and toluene were investigated, both sole components and in a binary mixture. It was concluded that the adsorption behaviors of benzene and toluene against AC were quite different when they were in the competition (in a binary mixture) and without competition (sole components).
引用
收藏
页码:26191 / 26210
页数:20
相关论文
共 80 条
[1]   Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: A factorial design analysis [J].
Adio, Salawu Omobayo ;
Omar, Mohamed Hussein ;
Asif, Mohammad ;
Saleh, Tawfik A. .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2017, 107 :518-527
[2]  
Alade Ibrahim Olanrewaju, 2019, Nano-Structures & Nano-Objects, V17, P103, DOI 10.1016/j.nanoso.2018.12.001
[3]   Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger [J].
Amini, Malihe ;
Younesi, Habibollah ;
Bahramifar, Nader ;
Lorestani, Ali Akbar Zinatizadeh ;
Ghorbani, Farshid ;
Daneshi, Ali ;
Sharifzadeh, Mazyar .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 154 (1-3) :694-702
[4]   Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation [J].
Angin, Dilek ;
Altintig, Esra ;
Kose, Tijen Ennil .
BIORESOURCE TECHNOLOGY, 2013, 148 :542-549
[5]  
Bansal R.C.H., 2005, ACTIVATED CARBON ADS, V1, P263
[6]   Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons [J].
Bansode, RR ;
Losso, JN ;
Marshall, WE ;
Rao, RM ;
Portier, RJ .
BIORESOURCE TECHNOLOGY, 2003, 90 (02) :175-184
[7]   Methylene Blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study [J].
Basaleh, Abdullah A. ;
Al-Malack, Muhammad H. ;
Saleh, Tawfik A. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2019, 7 (03)
[8]   Characterization of Microwave and Conventional Heating on the Pyrolysis of Pistachio Shells for the Adsorption of Methylene Blue and Iodine [J].
Baytar, Orhan ;
Sahin, Omer ;
Saka, Cafer ;
Agrak, Selman .
ANALYTICAL LETTERS, 2018, 51 (14) :2205-2220
[9]   Modification of Activated Carbon Fiber by Metal Dispersion and Surface Functionalization for the Removal of 2-Chloroethanol [J].
Bikshapathi, Mekala ;
Mandal, Susovan ;
Mathur, Gyanesh N. ;
Sharma, Ashutosh ;
Verma, Nishith .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (23) :13092-13104
[10]   Gas phase adsorption of volatile organic compounds and water vapor on activated carbon cloth [J].
Cal, MP ;
Rood, MJ ;
Larson, SM .
ENERGY & FUELS, 1997, 11 (02) :311-315