Feasible Region of Optimal Power Flow: Characterization and Applications

被引:49
作者
Chiang, Hsiao-Dong [1 ]
Jiang, Chu-Yang [2 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[2] Tianjin Univ, Sch Elect Engn & Automat, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal power flow; feasible region; characterization; visualization; complete stability; STABILITY REGIONS; DYNAMICAL-SYSTEMS; PART I;
D O I
10.1109/TPWRS.2017.2692268
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The feasible region plays a fundamental role in solving optimal power flow (OPF) problems. In this paper, a mathematical characterization of the feasible region is presented. An equivalence is established between the feasible region of an OPF problem and the union of regular stable equilibrium manifolds of a quotient gradient system (QGS) that is derived from the set of equality and inequality constraints of the OPF problem. It is further shown that the QGS is completely stable and that each trajectory converges to an equilibrium manifold, making the QGS trajectories useful in locating feasible OPF solutions. The theoretical results developed in this paper have been numerically verified in several OPF problems. Finally, the notion of a local feasible region is proposed and discussed.
引用
收藏
页码:236 / 244
页数:9
相关论文
共 24 条
  • [1] Solving III-Posed Optimal Power Flow Problems Via Fritz-John Optimality Conditions
    Almeida, Katia C.
    Kocholik, Aline
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (06) : 4913 - 4922
  • [2] Alves D. A., 2002, IEEE Power Engineering Review, V22, P49, DOI 10.1109/MPER.2002.989195
  • [3] [Anonymous], 1962, Bulletin de la Societe Francaise des electriciens
  • [4] [Anonymous], 2013, EXPLORATION ACOPF FE
  • [5] Bienstock D., 2015, ARXIV E PRINTS
  • [6] Bukhsh W. A., TEST CASE ARCH OPTIM
  • [7] Local Solutions of the Optimal Power Flow Problem
    Bukhsh, Waqquas A.
    Grothey, Andreas
    McKinnon, Ken I. M.
    Trodden, Paul A.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) : 4780 - 4788
  • [8] Chiang H.-D., 2015, STABILITY REGIONS NO
  • [9] Chiang H.D., 2011, DIRECT METHODS STABI
  • [10] STABILITY REGIONS OF NONLINEAR AUTONOMOUS DYNAMICAL-SYSTEMS
    CHIANG, HD
    HIRSCH, MW
    WU, FF
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (01) : 16 - 27