Bioelectrochemical control of neural cell development on conducting polymers

被引:82
作者
Collazos-Castro, Jorge E. [1 ]
Polo, Jose L. [2 ]
Hernandez-Labrado, Gabriel R. [2 ]
Padial-Canete, Vanesa [1 ]
Garcia-Rama, Concepcion [1 ]
机构
[1] Hosp Nacl Paraplej SESCAM, Neural Repair Lab, Toledo 45071, Spain
[2] Univ Castilla La Mancha, EU Ingn Tecn Ind, Toledo 45071, Spain
关键词
Conducting polymers; PEDOT:PSS; Self-assembled multilayers; Cell culture; Electrochemistry; Neural cells; FIBROBLAST-GROWTH-FACTOR; POLYPYRROLE-HEPARIN; NEURITE OUTGROWTH; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); SPERMINE; PROTEIN; FILMS; MICROELECTRODES; STIMULATION; ATTACHMENT;
D O I
10.1016/j.biomaterials.2010.08.057
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9244 / 9255
页数:12
相关论文
共 59 条
[1]   Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes [J].
Abidian, Mohammad Reza ;
Martin, David C. .
BIOMATERIALS, 2008, 29 (09) :1273-1283
[2]  
Ahee P, 2000, J ACCID EMERG MED, V17, P188
[3]   Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes [J].
Asplund, M. ;
Thaning, E. ;
Lundberg, J. ;
Sandberg-Nordqvist, A. C. ;
Kostyszyn, B. ;
Inganas, O. ;
von Holst, H. .
BIOMEDICAL MATERIALS, 2009, 4 (04)
[4]   Composite biomolecule/PEDOT materials for neural electrodes [J].
Asplund, Maria ;
von Holst, Hans ;
Inganas, Olle .
BIOINTERPHASES, 2008, 3 (03) :83-93
[5]   Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons [J].
Belachew, S ;
Chittajallu, R ;
Aguirre, AA ;
Yuan, XQ ;
Kirby, M ;
Anderson, S ;
Gallo, V .
JOURNAL OF CELL BIOLOGY, 2003, 161 (01) :169-186
[6]   Heparan sulphate/heparin glycosaminoglycans with strong affinity for the growth-promoter spermine have high antiproliferative activity [J].
Belting, M ;
Havsmark, B ;
Jonsson, M ;
Persson, S ;
Fransson, LA .
GLYCOBIOLOGY, 1996, 6 (02) :121-129
[7]   Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions [J].
Bobacka, J ;
Lewenstam, A ;
Ivaska, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 489 (1-2) :17-27
[8]   Titanium oxide as substrate for neural cell growth [J].
Carballo-Vila, Monica ;
Moreno-Burriel, Berta ;
Chinarro, Eva ;
Jurado, Jose R. ;
Casan-Pastor, Nieves ;
Collazos-Castro, Jorge E. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 90A (01) :94-105
[9]   POLYAMINES PROMOTE REGENERATION OF INJURED AXONS OF CULTURED RAT HIPPOCAMPAL-NEURONS [J].
CHU, PJ ;
SAITO, H ;
ABE, K .
BRAIN RESEARCH, 1995, 673 (02) :233-241
[10]   Neuroprotective effects of spermine following hypoxia-ischemia-induced brain damage: A mechanistic study [J].
Clarkson, AN ;
Liu, HZ ;
Pearson, L ;
Kapoor, M ;
Harrison, JC ;
Sammut, IA ;
Jackson, DM ;
Appleton, I .
FASEB JOURNAL, 2004, 18 (07) :1114-+