A magnetoelectric flux gate: new approach for weak DC magnetic field detection

被引:39
作者
Chu, Zhaoqiang [1 ]
Shi, Huaduo [1 ]
PourhosseiniAsl, Mohammad Javad [1 ]
Wu, Jingen [1 ]
Shi, Weiliang [1 ]
Gao, Xiangyu [1 ]
Yuan, Xiaoting [1 ]
Dong, Shuxiang [1 ,2 ]
机构
[1] Peking Univ, Dept Mat Sci & Engn, Coll Engn, Beijing 100871, Peoples R China
[2] Beijing Key Lab Magnetoelet Mat & Devices, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSITIVITY; MAGNETORESISTANCE;
D O I
10.1038/s41598-017-09420-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnetic flux gate sensors based on Faraday's Law of Induction are widely used for DC or extremely low frequency magnetic field detection. Recently, as the fast development of multiferroics and magnetoelectric (ME) composite materials, a new technology based on ME coupling effect is emerging for potential devices application. Here, we report a magnetoelectric flux gate sensor (MEFGS) for weak DC magnetic field detection for the first time, which works on a similar magnetic flux gate principle, but based on ME coupling effect. The proposed MEFGS has a shuttle-shaped configuration made of amorphous FeBSi alloy (Metglas) serving as both magnetic and magnetostrictive cores for producing a closed-loop high-frequency magnetic flux and also a longitudinal vibration, and one pair of embedded piezoelectric PMN-PT fibers ([011]-oriented Pb(Mg, Nb)O-3-PbTiO3 single crystal) serving as ME flux gate in a differential mode for detecting magnetic anomaly. In this way, the relative change in output signal of the MEFGS under an applied DC magnetic anomaly of 1 nT was greatly enhanced by a factor of 4 to 5 in comparison with the previous reports. The proposed ME flux gate shows a great potential for magnetic anomaly detections, such as magnetic navigation, magnetic based medical diagnosis, etc.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Low-Loss Piezoelectric Single-Crystal Fibers for Enhanced Magnetic Energy Harvesting with Magnetoelectric Composite [J].
Annapureddy, Venkateswarlu ;
Kim, Miso ;
Palneedi, Haribabu ;
Lee, Ho-Yong ;
Choi, Si-Young ;
Yoon, Woon-Ha ;
Park, Dong-Soo ;
Choi, Jong-Jin ;
Hahn, Byung-Dong ;
Ahn, Cheol-Woo ;
Kim, Jong-Woo ;
Jeong, Dea-Yong ;
Ryu, Jungho .
ADVANCED ENERGY MATERIALS, 2016, 6 (24)
[2]   DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures [J].
Burdin, Dmitrii ;
Chashin, Dmitrii ;
Ekonomov, Nikolai ;
Fetisov, Leonid ;
Fetisov, Yuri ;
Shamonin, Mikhail .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (37)
[3]   Enhanced Resonance Magnetoelectric Coupling in (1-1) Connectivity Composites [J].
Chu, Zhaoqiang ;
Shi, Huaduo ;
Shi, Weiliang ;
Liu, Guoxi ;
Wu, Jingen ;
Yang, Jikun ;
Dong, Shuxiang .
ADVANCED MATERIALS, 2017, 29 (19)
[4]   Giant magnetoelectric effect (under a dc magnetic bias of 2 Oe) in laminate composites of FeBSiC alloy ribbons and Pb(Zn1/3,Nb2/3)O3-7%PbTiO3 fibers [J].
Dong, Shuxiang ;
Zhai, Junyi ;
Xing, Zhengping ;
Li, Jiefang ;
Viehland, D. .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[5]   Magnetoelectric effect in Terfenol-D/Pb(Zr,TiO)3/μ-metal laminate composites [J].
Dong, Shuxiang ;
Zhai, Jungyi ;
Li, Jie-Fang ;
Viehland, D. .
APPLIED PHYSICS LETTERS, 2006, 89 (12)
[6]   Small dc magnetic field response of magnetoelectric laminate composites [J].
Dong, SX ;
Zhai, JY ;
Li, JF ;
Viehland, D .
APPLIED PHYSICS LETTERS, 2006, 88 (08)
[7]   A longitudinal-longitudinal mode TERFENOL-D/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composite [J].
Dong, SX ;
Li, JF ;
Viehland, D .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5305-5306
[8]   Thin-film piezoelectric MEMS [J].
Eom, Chang-Beom ;
Trolier-McKinstry, Susan .
MRS BULLETIN, 2012, 37 (11) :1007-1021
[9]   Enhanced sensitivity to direct current magnetic field changes in Metglas/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminates [J].
Gao, Junqi ;
Shen, Liangguo ;
Wang, Yaojing ;
Gray, David ;
Li, Jiefang ;
Viehland, D. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[10]   Multiferroic Heterostructures Integrating Ferroelectric and Magnetic Materials [J].
Hu, Jia-Mian ;
Chen, Long-Qing ;
Nan, Ce-Wen .
ADVANCED MATERIALS, 2016, 28 (01) :15-39