Akt Phosphorylation of Hepatitis C Virus NS5B Regulates Polymerase Activity and Hepatitis C Virus Infection

被引:3
作者
Sabariegos, Rosario [1 ,2 ,3 ]
Albentosa-Gonzalez, Laura [1 ]
Palmero, Blanca [1 ]
Clemente-Casares, Pilar [1 ,3 ,4 ]
Ramirez, Eugenio [1 ]
Garcia-Crespo, Carlos [5 ,6 ]
Gallego, Isabel [5 ,6 ]
de avila, Ana Isabel [5 ,6 ]
Perales, Celia [5 ,6 ,7 ]
Domingo, Esteban [3 ,5 ,6 ]
Mas, Antonio [1 ,3 ,4 ]
机构
[1] Univ Castilla La Mancha, Ctr Reg Invest Biomed, Albacete, Spain
[2] Univ Castilla La Mancha, Fac Med, Albacete, Spain
[3] Unidad Biomed UCLM CSIC, Madrid, Spain
[4] Univ Castilla La Mancha, Fac Farm, Albacete, Spain
[5] CSIC, Ctr Biol Mol Severo Ochoa CBMSO CSIC UAM, Madrid, Spain
[6] Inst Salud Carlos III, Ctr Invest Biomed Red Enfermedades Hepat & Digest, Madrid, Spain
[7] Univ Autonoma Madrid IIS FJD, UAM, Dept Clin Microbiol, Inst Invest Sanitaria Fdn Jimenez Diaz Univ Hosp, Madrid, Spain
关键词
HCV (hepatitis C); NS5B (non-structural protein) polymerase; Akt; virus replication; phosphorylation; DEPENDENT RNA-POLYMERASE; PROTEIN-INTERACTION; P-PROTEIN; REPLICATION; RESISTANCE; KINASE; SOFOSBUVIR; NETWORK; S282;
D O I
10.3389/fmicb.2021.754664
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hepatitis C virus (HCV) is a single-stranded RNA virus of positive polarity [ssRNA(+)] that replicates its genome through the activity of one of its proteins, called NS5B. This viral protein is responsible for copying the positive-polarity RNA genome into a negative-polarity RNA strand, which will be the template for new positive-polarity RNA genomes. The NS5B protein is phosphorylated by cellular kinases, including Akt. In this work, we have identified several amino acids of NS5B that are phosphorylated by Akt, with positions S27, T53, T267, and S282 giving the most robust results. Site-directed mutagenesis of these residues to mimic (Glu mutants) or prevent (Ala mutants) their phosphorylation resulted in a reduced NS5B in vitro RNA polymerase activity, except for the T267E mutant, the only non-conserved position of all those that are phosphorylated. In addition, in vitro transcribed RNAs derived from HCV complete infectious clones carrying mutations T53E/A and S282E/A were transfected in Huh-7.5 permissive cells, and supernatant viral titers were measured at 6 and 15 days post-transfection. No virus was rescued from the mutants except for T53A at 15 days post-transfection whose viral titer was statistically lower as compared to the wild type. Therefore, phosphorylation of NS5B by cellular kinases is a mechanism of viral polymerase inactivation. Whether this inactivation is a consequence of interaction with cellular kinases or a way to generate inactive NS5B that may have other functions are questions that need further experimental work.</p>
引用
收藏
页数:11
相关论文
共 41 条
  • [1] Akt Interacts with Usutu Virus Polymerase, and Its Activity Modulates Viral Replication
    Albentosa-Gonzalez, Laura
    Sabariegos, Rosario
    Arias, Armando
    Clemente-Casares, Pilar
    Mas, Antonio
    [J]. PATHOGENS, 2021, 10 (02): : 1 - 15
  • [2] Antiviral resistance and direct- acting antiviral agents for HCV
    Aloia, Amanda L.
    Locarnini, Stephen
    Beard, Michael R.
    [J]. ANTIVIRAL THERAPY, 2012, 17 (06) : 1147 - 1162
  • [3] Structural basis for RNA replication by the hepatitis C virus polymerase
    Appleby, Todd C.
    Perry, Jason K.
    Murakami, Eisuke
    Barauskas, Ona
    Feng, Joy
    Cho, Aesop
    Fox, David, III
    Wetmore, Diana R.
    McGrath, Mary E.
    Ray, Adrian S.
    Sofia, Michael J.
    Swaminathan, S.
    Edwards, Thomas E.
    [J]. SCIENCE, 2015, 347 (6223) : 771 - 775
  • [4] PHOSPHORYLATION OF SER(232) DIRECTLY REGULATES THE TRANSCRIPTIONAL ACTIVITY OF THE P-PROTEIN OF HUMAN RESPIRATORY SYNCYTIAL VIRUS - PHOSPHORYLATION OF SER(237) MAY PLAY AN ACCESSORY ROLE
    BARIK, S
    MCLEAN, T
    DUPUY, LC
    [J]. VIROLOGY, 1995, 213 (02) : 405 - 412
  • [5] Mutagenesis analysis of the rGTP-specific binding site of hepatitis C virus RNA-dependent RNA polymerase
    Cai, ZH
    Yi, MK
    Zhang, C
    Luo, GX
    [J]. JOURNAL OF VIROLOGY, 2005, 79 (18) : 11607 - 11617
  • [6] Global prevalence of pre-existing HCV variants resistant to directacting antiviral agents (DAAs): mining the GenBank HCV genome data
    Chen, Zhi-wei
    Li, Hu
    Ren, Hong
    Hu, Peng
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [7] Regulation of De Novo-Initiated RNA Synthesis in Hepatitis C Virus RNA-Dependent RNA Polymerase by Intermolecular Interactions
    Chinnaswamy, S.
    Murali, A.
    Li, P.
    Fujisaki, K.
    Kao, C. C.
    [J]. JOURNAL OF VIROLOGY, 2010, 84 (12) : 5923 - 5935
  • [8] A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase
    Chinnaswamy, Sreedhar
    Yarbrough, Ian
    Palaninathan, Satheesh
    Kumar, C. T. Ranjith
    Vijayaraghavan, Vinodhini
    Demeler, Borries
    Lemon, Stanley M.
    Sacchettini, James C.
    Kao, C. Cheng
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (29) : 20535 - 20546
  • [9] De Novo Polymerase Activity and Oligomerization of Hepatitis C Virus RNA-Dependent RNA-Polymerases from Genotypes 1 to 5
    Clemente-Casares, Pilar
    Lopez-Jimenez, Alberto J.
    Bellon-Echeverria, Itxaso
    Antonio Encinar, Jose
    Martinez-Alfaro, Elisa
    Perez-Flores, Ricardo
    Mas, Antonio
    [J]. PLOS ONE, 2011, 6 (04):
  • [10] Hepatitis C virus infection protein network
    de Chassey, B.
    Navratil, V.
    Tafforeau, L.
    Hiet, M. S.
    Aublin-Gex, A.
    Agaugue, S.
    Meiffren, G.
    Pradezynski, F.
    Faria, B. F.
    Chantier, T.
    Le Breton, M.
    Pellet, J.
    Davoust, N.
    Mangeot, P. E.
    Chaboud, A.
    Penin, F.
    Jacob, Y.
    Vidalain, P. O.
    Vidal, M.
    Andre, P.
    Rabourdin-Combe, C.
    Lotteau, V.
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1)