Pseudo prolate spheroidal functions

被引:0
作者
Abreu, Luis Daniel [1 ]
Pereira, Jao M. [2 ]
机构
[1] Austrian Acad Sci, Acoust Res Inst, Wohllebengasse 12-14, A-1040 Vienna, Austria
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
来源
2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA) | 2015年
关键词
PSEUDOSPECTRA; UNCERTAINTY; SPECTRA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Let D-T and B-Omega denote the operators which cut the time content outside T and the frequency content outside Omega, respectively. The prolate spheroidal functions are the eigen-functions of the operator P-T,P-Omega = DTB Omega DT. With the aim of formulating in precise mathematical terms the notion of Nyquist rate, Landau and Pollack have shown that, asymptotically, the number of such functions with eigenvalue close to one is approximate to vertical bar T vertical bar vertical bar Omega vertical bar/2 pi We have recently revisited this problem with a new approach: instead of counting the number of eigenfunctions with eigenvalue close to one, we count the maximum number of orthogonal c-pseudoeigenfunctions with epsilon-pseudoeigenvalue one. Precisely, we count how many orthogonal functions have a maximum of energy outside the domain T x Omega, in the sense that parallel to P-T,P-Omega f - f parallel to(2) <= epsilon. We have recently discovered that the sharp asymptotic number is approximate to(1 - epsilon)-1- vertical bar T vertical bar vertical bar Omega vertical bar/2 pi. The proof involves an explicit construction of the pseudoeigenfunctions of P-T,P-Omega. When T and Omega are intervals we call them pseudo prolate spheroidal functions. In this paper we explain how they are constructed.
引用
收藏
页码:603 / 607
页数:5
相关论文
共 25 条
[1]  
Abreu L. D., PSEUDOSPECTRA UNPUB
[2]  
Abreu L. D., T AM MATH SOC
[3]   Measures of localization and quantitative Nyquist densities [J].
Abreu, Luis Daniel ;
Pereira, Joao M. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 38 (03) :524-534
[4]   Landau's necessary density conditions for the Hankel transform [J].
Abreu, Luis Daniel ;
Bandeira, Afonso S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) :1845-1866
[5]  
[Anonymous], P INT C MATH SEOUL S
[6]  
[Anonymous], APPL NUMERICAL HARMO
[7]   Adaptive frame methods for nonlinear variational problems [J].
Charina, Maria ;
Conti, Costanza ;
Fornasier, Massimo .
NUMERISCHE MATHEMATIK, 2008, 109 (01) :45-75
[8]  
Daubechies I., 1992, COMPUT PHYS, V6, P697, DOI DOI 10.1063/1.4823127
[9]   Uniform eigenvalue estimates for time-frequency localization operators [J].
De Mari, F ;
Feichtinger, HG ;
Nowak, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 :720-732
[10]   Pseudospectra of semiclassical (pseudo-) differential operators [J].
Dencker, N ;
Sjöstrand, J ;
Zworski, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (03) :384-415