Restricted Solid-on-solid Growth Model for Fractal Substrates

被引:11
作者
Lee, Sang Bub [1 ]
Jeong, Hyeong-Chai [2 ]
Kim, Jin Min [3 ,4 ]
机构
[1] Kyungpook Natl Univ, Dept Phys, Taegu 702701, South Korea
[2] Sejong Univ, Dept Phys, Seoul 143747, South Korea
[3] Soongsil Univ, Dept Phys, Seoul 156743, South Korea
[4] Soongsil Univ, Comp Aided Mol Design Res Ctr, Seoul 156743, South Korea
关键词
Restricted solid-on-solid model; Fractal; Surface roughness; Kardar-Parisi-Zhang equation;
D O I
10.3938/jkps.58.1076
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A restricted solid-on-solid growth model is studied for various fractal substrates, i.e., a Sierpinski gasket, a checkerboard fractal, and a Sierpinski carpet, all embedded in two dimensions. The interface width W grows as t(beta) with beta approximate to 0.29 for Sierpinski gasket and beta approximate to 0.31 for both a checkerboard fractal and a Sierpinski carpet. At saturation, W follows W similar to L-alpha, with alpha approximate to 0.50 for a Sierpinski gasket and alpha approximate to 0.52 for both a checkerboard fractal and a Sierpinski carpet, where L is the system size. The dynamic exponent z is obtained from the relation z = alpha/beta. The estimated exponents break the scaling relation alpha + z = 2, which is known to be valid on a regular lattice.
引用
收藏
页码:1076 / 1081
页数:6
相关论文
共 25 条
[1]  
[Anonymous], 1959, J. Colloid Sci., DOI DOI 10.1016/0095-8522(59)90041-8
[2]  
Barabsi A-L., 1995, Fractal Concepts in Surface Growth, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[3]  
Burgers J.M., 1974, The Nonlinear Diffusion Equation, DOI [10.1007/978-94-010-1745-9, DOI 10.1007/978-94-010-1745-9]
[4]   Universality classes of the Kardar-Parisi-Zhang equation [J].
Canet, L. ;
Moore, M. A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[5]   Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation [J].
Canet, Leonie ;
Chate, Hugues ;
Delamotte, Bertrand ;
Wschebor, Nicolas .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[6]  
Eden M., 1961, Sympos. Math. Statist. and Prob., VIV, P223
[7]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[8]   SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL [J].
FAMILY, F ;
VICSEK, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :L75-L81
[9]  
Family F., 1991, DYNAMICS FRACTAL SUR
[10]   SURFACE ROUGHENING IN A HYPERCUBE-STACKING MODEL [J].
FORREST, BM ;
TANG, LH .
PHYSICAL REVIEW LETTERS, 1990, 64 (12) :1405-1408