Higher rank hyperbolicity

被引:13
作者
Kleiner, Bruce [1 ]
Lang, Urs [2 ]
机构
[1] Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
QUASI-ISOMETRIES; SYMMETRIC-SPACES; MORSE LEMMA; GEODESICS; MANIFOLDS; RIGIDITY; BOUNDARIES; CURVATURE; GEOMETRY; CURRENTS;
D O I
10.1007/s00222-020-00955-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results for spaces of rank n >= 2 in an asymptotic sense, under some weak assumptions reminiscent of nonpositive curvature. For this purpose we replace quasi-geodesic lines with quasi-minimizing (locally finite) n-cycles of r n volume growth; prime examples include n-cycles associated with n-quasiflats. Solving an asymptotic Plateau problem and producing unique tangent cones at infinity for such cycles, we show in particular that every quasi-isometry between two proper CAT(0) spaces of asymptotic rank n extends to a class of (n - 1)-cycles in the Tits boundaries.
引用
收藏
页码:597 / 664
页数:68
相关论文
共 50 条
  • [31] Global rigidity of higher rank lattice actions with dominated splitting
    Lee, Homin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (03) : 799 - 828
  • [33] Rigidity of higher rank abelian cocycles with values in diffeomorphism groups
    A. Katok
    V. Niţică
    Geometriae Dedicata, 2007, 124 : 109 - 131
  • [34] An Upper Bound for the Poisson Kernel on Higher Rank NA Groups
    Penney, Richard C.
    Urban, Roman
    POTENTIAL ANALYSIS, 2011, 35 (04) : 373 - 386
  • [35] EQUIDISTRIBUTION FOR HIGHER-RANK ABELIAN ACTIONS ON HEISENBERG NILMANIFOLDS
    Cosentino, Salvatore
    Flaminio, Livio
    JOURNAL OF MODERN DYNAMICS, 2015, 9 : 305 - 353
  • [36] Hyperbolicity in median graphs
    Sigarreta, Jose M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (04): : 455 - 467
  • [37] On the hyperbolicity constant in graphs
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Vilaire, Jean-Marie
    Villeta, Maria
    DISCRETE MATHEMATICS, 2011, 311 (04) : 211 - 219
  • [38] Primitive stable representations in higher rank semisimple Lie groups
    Kim, Inkang
    Kim, Sungwoon
    REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (03): : 715 - 745
  • [39] Hyperbolicity and parameters of graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    ARS COMBINATORIA, 2011, 100 : 43 - 63
  • [40] PARTIAL HYPERBOLICITY AND SPECIFICATION
    Sumi, Naoya
    Varandas, Paulo
    Yamamoto, Kenichiro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (03) : 1161 - 1170