Broadband responsivity enhancement of Si photodiodes by a plasmonic antireflection bilayer

被引:2
作者
Park, Jongcheol [1 ]
Kang, Il-Suk [1 ]
Sim, Gapseop [1 ]
Kim, Tae Hyun [1 ]
Lee, Jong-Kwon [2 ]
机构
[1] Natl NanoFab Ctr, Off Nano Convergence Technol, Daejeon 34141, South Korea
[2] Cheongju Univ, Div Energy & Opt Technol Convergence, Cheongju 28503, Chungcheongbuk, South Korea
关键词
HIGH-PERFORMANCE; SILICON; NANOPARTICLES; RANGE; AG;
D O I
10.1364/OE.432689
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Randomly distributed plasmonic Ag nanoparticles (NPs) with various Sizes were fabricated by a reflow process to an island-shaped Ag thin-film deposited on a Si photodiode. These NPs contormally enclosed by an antireflective (AR)-type SiNx/SiO2 bilayer reveal significantly diminished reflectance in a broad wavelength (500 nm - 1100 nm) as compared to the cases of Ag NPs or SiO2 layer enclosing Ag NPs on the Si substrate. Accordingly, the tbrward scattering and the total reflection along with wide-angle interference in between the dielectric bilayer incorporating the Ag NPs induce highly increased light absorption in the Si substrate. The fabricated Si photodiode adopting the plasmonic AR bilayer shows the responsivity peak value of 0.72 A/W at 835 nm wavelength and significant responsivity enhancement up to 40% relative to a bare Si photodiode in a wavelength range of 500 nm to 1000 nm. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:26634 / 26644
页数:11
相关论文
共 28 条
[1]   Dewetting Metal Nanofilms-Effect of Substrate on Refractive Index Sensitivity of Nanoplasmonic Gold [J].
Bhalla, Nikhil ;
Jain, Aditya ;
Lee, Yoonjoo ;
Shen, Amy Q. ;
Lee, Doojin .
NANOMATERIALS, 2019, 9 (11)
[2]  
Castaneda Denisse, 2018, Int J Biosens Bioelectron, V4, P195, DOI 10.15406/ijbsbe.2018.04.00125
[3]   MW-PPG Sensor: An on-Chip Spectrometer Approach [J].
Chang, Cheng-Chun ;
Wu, Chien-Ta ;
Choi, Byung Il ;
Fang, Tong-Jing .
SENSORS, 2019, 19 (17)
[4]   Laser-Microstructured ZnO/p-Si Photodetector with Enhanced and Broadband Responsivity across the Ultraviolet-Visible-Near-Infrared Range [J].
Chatzigiannakis, Georgios ;
Jaros, Angelina ;
Leturcq, Renaud ;
Jungclaus, Joergen ;
Voss, Tobias ;
Gardelis, Spyros ;
Kandyla, Maria .
ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (09) :2819-2828
[5]   Plasmonic Photodetectors [J].
Dorodnyy, Alexander ;
Salamin, Yannick ;
Ma, Ping ;
Plestina, Jelena Vukajiovic ;
Lassaline, Nolan ;
Mikulik, Dmitry ;
Romero-Gomez, Pablo ;
Fontcuberta i Morral, Anna ;
Leuthold, Juerg .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (06)
[6]  
Edward D.P., 1985, Handbook of Optical Constants of Solids
[7]   Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings [J].
Fahim, Narges F. ;
Ouyang, Zi ;
Jia, Baohua ;
Zhang, Yinan ;
Shi, Zhengrong ;
Gu, Min .
APPLIED PHYSICS LETTERS, 2012, 101 (26)
[8]   Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications [J].
Gunendi, M. Can ;
Tanyeli, Irem ;
Akguc, Gursoy B. ;
Bek, Alpan ;
Turan, Rasit ;
Gulseren, Oguz .
OPTICS EXPRESS, 2013, 21 (15) :18344-18353
[9]   Wearable and flexible sensors for user-interactive health-monitoring devices [J].
Ha, Minjeong ;
Lim, Seongdong ;
Ko, Hyunhyub .
JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (24) :4043-4064
[10]   The hybrid concept for realization of an ultra-thin plasmonic metamaterial antireflection coating and plasmonic rainbow [J].
Hedayati, M. Keshavarz ;
Fahr, S. ;
Etrich, C. ;
Faupel, F. ;
Rockstuhl, C. ;
Elbahri, M. .
NANOSCALE, 2014, 6 (11) :6037-6045