Effect of Biomass as Nucleating Agents on Crystallization Behavior of Polylactic Acid

被引:39
作者
Shi, Kang [1 ]
Liu, Guoshuai [1 ]
Sun, Hui [1 ,2 ]
Yang, Biao [1 ]
Weng, Yunxuan [1 ,2 ]
机构
[1] Beijing Technol & Business Univ, Coll Chem & Mat Engn, Beijing 100048, Peoples R China
[2] Beijing Technol & Business Univ, Beijing Key Lab Qual Evaluat Technol Hyg & Safety, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
polylactic acid; biomass; nucleating agent; crystallization; MULTIPLE MELTING BEHAVIOR; POLY(LACTIC ACID); NONISOTHERMAL CRYSTALLIZATION; ISOTHERMAL CRYSTALLIZATION; CRYSTAL-STRUCTURE; KINETICS; LIGNIN; CELLULOSE; POLY(L-LACTIDE); COMPOSITES;
D O I
10.3390/polym14204305
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polylactic acid (PLA) is one of the most productive biodegradable materials. Its bio-based source makes it truly carbon neutral. However, PLA is hard to crystallize as indicated by a low crystallization rate and a low crystallinity under conventional processing conditions, which limits its wider application. One of the most effective ways to enhance the crystallization ability of PLA is to add nucleating agents. In the context of increasing global environmental awareness and the decreasing reserves of traditional petroleum-based materials, biomass nucleating agents, compared with commonly used petroleum-based nucleating agents, have received widespread attention in recent years due to their abundance, biodegradability and renewability. This paper summarizes the research progress on biomass nucleating agents for regulating the crystallization behavior of polylactic acid. Examples of biomass nucleating agents include cellulose, hemicellulose, lignin, amino acid, cyclodextrins, starch, wood flour and natural plant fiber. Such green components from biomass for PLA are believed to be a promising solution for the development of a wholly green PLA-based system or composites.
引用
收藏
页数:16
相关论文
共 71 条
[1]   Combined effect of nucleating agent and plasticizer on the crystallization behaviour of polylactide [J].
Anakabe, Jon ;
Zaldua Huici, A. M. ;
Eceiza, Arantxa ;
Arbelaiz, Aitor ;
Averous, Luc .
POLYMER BULLETIN, 2017, 74 (12) :4857-4886
[2]   Exploring Charged Polymeric Cyclodextrins for Biomedical Applications [J].
Bognanni, Noemi ;
Bellia, Francesco ;
Viale, Maurizio ;
Bertola, Nadia ;
Vecchio, Graziella .
MOLECULES, 2021, 26 (06)
[3]   Non-Isothermal Crystallization Kinetics of Poly(Lactic Acid)/Kenaf Fiber Composites [J].
Borhan, Adibah ;
Taib, Razaina Mat .
SAINS MALAYSIANA, 2020, 49 (09) :2169-2185
[4]   Structure-related properties of bionanocomposites based on poly(lactic acid), cellulose nanocrystals and organic impact modifier [J].
Boruvka, Martin ;
Behalek, Lubos ;
Lenfeld, Petr ;
Ngaowthong, Chakaphan ;
Pechociakova, Miroslava .
MATERIALS TECHNOLOGY, 2019, 34 (03) :143-156
[5]   Development of Antimicrobial PLA Composites for Fused Filament Fabrication [J].
Brounstein, Zachary ;
Yeager, Chris M. ;
Labouriau, Andrea .
POLYMERS, 2021, 13 (04) :1-18
[6]   Amino acids and poly(amino acids) as nucleating agents for poly(lactic acid) [J].
Carbone, Maria Josefina ;
Vanhalle, Maja ;
Goderis, Bart ;
Van Puyvelde, Peter .
JOURNAL OF POLYMER ENGINEERING, 2015, 35 (02) :169-180
[7]   Epitaxial crystallization and crystalline polymorphism of polylactides [J].
Cartier, L ;
Okihara, T ;
Ikada, Y ;
Tsuji, H ;
Puiggali, J ;
Lotz, B .
POLYMER, 2000, 41 (25) :8909-8919
[8]   Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application [J].
Cesur, Sumeyye ;
Oktar, Faik Nuzhet ;
Ekren, Nazmi ;
Kilic, Osman ;
Alkaya, Dilek Bilgic ;
Seyhan, Serap Ayaz ;
Ege, Zeynep Ruya ;
Lin, Chi-Chang ;
Erdem, Serap ;
Erdemir, Gokce ;
Gunduz, Oguzhan .
JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2020, 56 (02) :533-543
[9]   Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly(lactic acid) (PLA) with plasticizer [J].
Clarkson, Caitlyn M. ;
Azrak, Sami M. El Awad ;
Schueneman, Gregory T. ;
Snyder, James F. ;
Youngblood, Jeffrey P. .
POLYMER, 2020, 187
[10]   3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties [J].
Coppola, Bartolomeo ;
Cappetti, Nicola ;
Di Maio, Luciano ;
Scarfato, Paola ;
Incarnato, Loredana .
MATERIALS, 2018, 11 (10)