Manifestation of Hamiltonian Monodromy in Nonlinear Wave Systems

被引:5
作者
Assemat, E. [1 ]
Michel, C. [1 ]
Picozzi, A. [1 ]
Jauslin, H. R. [1 ]
Sugny, D. [1 ]
机构
[1] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne ICB, UMR 5209, CNRS, F-21078 Dijon, France
关键词
D O I
10.1103/PhysRevLett.106.014101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the concept of dynamical monodromy plays a natural fundamental role in the spatiotemporal dynamics of counterpropagating nonlinear wave systems. By means of an adiabatic change of the boundary conditions imposed to the wave system, we show that Hamiltonian monodromy manifests itself through the spontaneous formation of a topological phase singularity (2 pi- or pi-phase defect) in the nonlinear waves. This manifestation of dynamical Hamiltonian monodromy is illustrated by generic nonlinear wave models. In particular, we predict that its measurement can be realized in a direct way in the framework of a nonlinear optics experiment.
引用
收藏
页数:4
相关论文
共 23 条
  • [1] [Anonymous], 2015, Global aspects of classical integrable systems
  • [2] [Anonymous], 2003, Optical Solitons
  • [3] Complete nonlinear polarization control in an optical fiber system
    Assemat, E.
    Lagrange, S.
    Picozzi, A.
    Jauslin, H. R.
    Sugny, D.
    [J]. OPTICS LETTERS, 2010, 35 (12) : 2025 - 2027
  • [4] Fractional Bidromy in the Vibrational Spectrum of HOCl
    Assemat, E.
    Efstathiou, K.
    Joyeux, M.
    Sugny, D.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (11)
  • [5] Bohm A., 2003, TEXT MONOGR
  • [6] Nonspreading wave packets in three dimensions formed by an ultracold Bose gas in an optical lattice
    Conti, C
    Trillo, S
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (12) : 120404 - 1
  • [7] THE QUANTUM-MECHANICAL SPHERICAL PENDULUM
    CUSHMAN, R
    DUISTERMAAT, JJ
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 19 (02) : 475 - 479
  • [8] CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy -: art. no. 024302
    Cushman, RH
    Dullin, HR
    Giacobbe, A
    Holm, DD
    Joyeux, M
    Lynch, P
    Sadovskií, DA
    Zhilinskií, BI
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (02) : 024302 - 1
  • [9] Dynamical manifestations of Hamiltonian monodromy
    Delos, J. B.
    Dhont, G.
    Sadovskii, D. A.
    Zhilinskii, B. I.
    [J]. ANNALS OF PHYSICS, 2009, 324 (09) : 1953 - 1982
  • [10] Dynamical manifestation of Hamiltonian monodromy
    Delos, J. B.
    Dhont, G.
    Sadovskii, D. A.
    Zhilinskii, B. I.
    [J]. EPL, 2008, 83 (02)