Prime number theorems for Rankin-Selberg L-functions over number fields

被引:41
作者
Gillespie, Tim [2 ]
Ji GuangHua [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Rankin-Selberg L-functions; prime number theorem; base change; PLANCHEREL MEASURES; EULER PRODUCTS; CLASSIFICATION; CONJECTURE;
D O I
10.1007/s11425-010-4137-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define a Rankin-Selberg L-function attached to automorphic cuspidal representations of GL(m)(A(E)) x GL(m ')(A(F)) over cyclic algebraic number fields E and F which are invariant under the Galois action, by exploiting a result proved by Arthur and Clozel, and prove a prime number theorem for this L-function.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 22 条
[1]  
Arthur J., 1989, Annals of Mathematics Studies, V120
[2]   Boundedness of automorphic L-functions in vertical strips [J].
Gelbart, S ;
Shahidi, F .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (01) :79-107
[3]   A new method for lower bounds of L-functions [J].
Gelbart, SS ;
Lapid, EM ;
Sarnak, P .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) :91-94
[4]  
GODEMENT R, 1972, LECT NOTES MATH, DOI DOI 10.1007/BFB0070263
[5]  
Iwaniec H., 2004, AMS C PUBLICATIONS, V53
[6]   RANKIN-SELBERG CONVOLUTIONS [J].
JACQUET, H ;
PIATETSKIISHAPIRO, II ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) :367-464
[7]   ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC-FORMS .2. [J].
JACQUET, H ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (04) :777-815
[8]   ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC REPRESENTATIONS .1. [J].
JACQUET, H ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (03) :499-558
[9]   Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 [J].
Kim, HH ;
Ramakrishnan, D ;
Sarnak, P .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :139-183
[10]  
Langlands R.P., 1979, P S PURE MATH, V33, P205