A Local Outlier Factor-Based Detection of Copy Number Variations From NGS Data

被引:18
|
作者
Yuan, Xiguo [1 ]
Li, Junping [1 ]
Bai, Jun [2 ]
Xi, Jianing [3 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
[2] Shaanxi Prov Peoples Hosp, Dept Med Oncol, Xian 710068, Peoples R China
[3] Xidian Univ, Sch Comp Sci & Technol, Xian 710072, Peoples R China
关键词
Genomics; Bioinformatics; Sequential analysis; Tumors; Computer science; Computational modeling; Next generation networking; Copy number variation; local outlier factor; next generation sequencing; boxplot procedure; CELL LUNG-CANCER; ACCURATE DETECTION; READ ALIGNMENT; RESISTANCE; IDENTIFICATION; VARIANTS; SAMPLES; DEPTH; EGFR; TOOL;
D O I
10.1109/TCBB.2019.2961886
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Copy number variation (CNV) is a major type of genomic structural variations that play an important role in human disorders. Next generation sequencing (NGS) has fueled the advancement in algorithm design to detect CNVs at base-pair resolution. However, accurate detection of CNVs of low amplitudes remains a challenging task. This paper proposes a new computational method, CNV-LOF, to identify CNVs of full-range amplitudes from NGS data. CNV-LOF is distinctly different from traditional methods, which mainly consider aberrations from a global perspective and rely on some assumed distribution of NGS read depths. In contrast, CNV-LOF takes a local view on the read depths and assigns an outlier factor to each genome segment. With the outlier factor profile, CNV-LOF uses a boxplot procedure to declare CNVs without the reliance of any distribution assumptions. Simulation experiments indicate that CNV-LOF outperforms five existing methods with respect to F1-measure, sensitivity, and precision. CNV-LOF is further validated on real sequencing samples, yielding highly consistent results with peer methods. CNV-LOF is able to detect CNVs of low and moderate amplitudes where the other existing methods fail, and it is expected to become a routine approach for the discovery of novel CNVs on whole sequencing genome.
引用
收藏
页码:1811 / 1820
页数:10
相关论文
共 50 条
  • [1] Detection of copy number variations from NGS data by using an adaptive kernel density estimation-based outlier factor
    Haque, A. K. Alvi
    Xie, Kun
    Liu, Kang
    Zhao, Haiyong
    Yang, Xiaohui
    Yuan, Xiguo
    DIGITAL SIGNAL PROCESSING, 2022, 126
  • [2] CNVABNN: An AdaBoost algorithm and neural networks-based detection of copy number variations from NGS data
    Wang, Xuan
    Li, Junqing
    Huang, Tihao
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2022, 99
  • [3] Local outlier factor-based fault detection and evaluation of photovoltaic system
    Ding, Hanxiang
    Ding, Kun
    Zhang, Jingwei
    Wang, Yue
    Gao, Lie
    Li, Yuanliang
    Chen, Fudong
    Shao, Zhixiong
    Lai, Wanbin
    SOLAR ENERGY, 2018, 164 : 139 - 148
  • [4] KNNCNV: A K-Nearest Neighbor Based Method for Detection of Copy Number Variations Using NGS Data
    Xie, Kun
    Liu, Kang
    Alvi, Haque A. K.
    Chen, Yuehui
    Wang, Shuzhen
    Yuan, Xiguo
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [5] Detection of copy number variations from NGS data using read depth information: a diagnostic performance evaluation
    Quenez, O.
    Cassinari, K.
    Coutant, S.
    Lecoquierre, F.
    Le Guennec, K.
    Rousseau, S.
    Richard, A.
    Vasseur, S.
    Bouvignies, E.
    Bou, J.
    Lienard, G.
    Manase, S.
    Fourneaux, S.
    Vezain, M.
    Chambon, P.
    Joly-Helas, G.
    Le Meur, N.
    Castelain, M.
    Boland, A.
    Deleuze, J.
    Frex, C.
    Kasper, E.
    Frebourg, T.
    Saugier-Veber, P.
    Baert-Desurmont, S.
    Campion, D.
    Rovelet-Lecrux, A.
    Nicolas, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1627 - 1627
  • [6] Copy number variations analysis of NGS data in germline oncology testing
    Caloba, Maria
    Silva, Viviana
    Cerqueira, Rita
    Basto, Jorge Pinto
    MEDICINE, 2020, 99 (09)
  • [7] Detection of Copy Number Variations from Targeted Sequencing Data
    Gandin, Ilaria
    Vuckovic, Dragana
    HUMAN HEREDITY, 2013, 76 (02) : 106 - 106
  • [8] Detection of copy-number variations from NGS data using read depth information: a diagnostic performance evaluation
    Olivier Quenez
    Kevin Cassinari
    Sophie Coutant
    François Lecoquierre
    Kilan Le Guennec
    Stéphane Rousseau
    Anne-Claire Richard
    Stéphanie Vasseur
    Emilie Bouvignies
    Jacqueline Bou
    Gwendoline Lienard
    Sandrine Manase
    Steeve Fourneaux
    Nathalie Drouot
    Virginie Nguyen-Viet
    Myriam Vezain
    Pascal Chambon
    Géraldine Joly-Helas
    Nathalie Le Meur
    Mathieu Castelain
    Anne Boland
    Jean-François Deleuze
    Isabelle Tournier
    Françoise Charbonnier
    Edwige Kasper
    Gaëlle Bougeard
    Thierry Frebourg
    Pascale Saugier-Veber
    Stéphanie Baert-Desurmont
    Dominique Campion
    Anne Rovelet-Lecrux
    Gaël Nicolas
    European Journal of Human Genetics, 2021, 29 : 99 - 109
  • [9] Detection of copy-number variations from NGS data using read depth information: a diagnostic performance evaluation
    Quenez, Olivier
    Cassinari, Kevin
    Coutant, Sophie
    Lecoquierre, Francois
    Le Guennec, Kilan
    Rousseau, Stephane
    Richard, Anne-Claire
    Vasseur, Stephanie
    Bouvignies, Emilie
    Bou, Jacqueline
    Lienard, Gwendoline
    Manase, Sandrine
    Fourneaux, Steeve
    Drouot, Nathalie
    Nguyen-Viet, Virginie
    Vezain, Myriam
    Chambon, Pascal
    Joly-Helas, Geraldine
    Le Meur, Nathalie
    Castelain, Mathieu
    Boland, Anne
    Deleuze, Jean-Francois
    Tournier, Isabelle
    Charbonnier, Francoise
    Kasper, Edwige
    Bougeard, Gaelle
    Frebourg, Thierry
    Saugier-Veber, Pascale
    Baert-Desurmont, Stephanie
    Campion, Dominique
    Rovelet-Lecrux, Anne
    Nicolas, Gael
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2021, 29 (01) : 99 - 109
  • [10] A Sparse Model Based Detection of Copy Number Variations From Exome Sequencing Data
    Duan, Junbo
    Wan, Mingxi
    Deng, Hong-Wen
    Wang, Yu-Ping
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (03) : 496 - 505