A simple and flexible modification of Grunwald-Letnikov fractional derivative in image processing

被引:9
|
作者
Jalalinejad, H. [1 ]
Tavakoli, A. [2 ]
Zarmehi, F. [3 ]
机构
[1] Islamic Azad Univ, Kerman Branch, Dept Math, Kerman, Iran
[2] Univ Mazandaran, Math Dept, Babol Sar, Iran
[3] Vali E Asr Univ Rafsanjan, Math Dept, POB 518, Rafsanjan, Iran
关键词
Grunwald-Letnikov fractional derivative; Image enhancement; Edge detection; DIFFERENTIATION; DIFFUSION; EQUATION; TEXTURE;
D O I
10.1007/s40096-018-0260-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In image processing, edge detection and image enhancement can make use of fractional differentiation operators, especially the Grunwald-Letnikov derivative. In this paper, we present a modified Grunwald-Letnikov derivative to enhance more and detect better the edges of an image. Our proposed fractional derivative is very flexible and can be easily performed. We present some examples to justify our suggested approach.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 48 条
  • [1] A simple and flexible modification of Grünwald–Letnikov fractional derivative in image processing
    H. Jalalinejad
    A. Tavakoli
    F. Zarmehi
    Mathematical Sciences, 2018, 12 : 205 - 210
  • [2] Generalized Grunwald-Letnikov Fractional Derivative and Its Laplace and Fourier Transforms
    Ortigueira, Manuel D.
    Trujillo, Juan J.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (03):
  • [3] The Grunwald-Letnikov Fractional-Order Derivative with Fixed Memory Length
    Abdelouahab, Mohammed-Salah
    Hamri, Nasr-Eddine
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) : 557 - 572
  • [4] An Improved Grunwald-Letnikov Fractional Differential Mask for Image Texture Enhancement
    Garg, Vishwadeep
    Singh, Kulbir
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2012, 3 (03) : 130 - 135
  • [5] An Improved Approximation of Grunwald-Letnikov Fractional Integral
    AbdAlRahman, Alaa
    Abdelaty, Amr
    Soltan, Ahmed
    Radwan, Ahmed G.
    2021 10TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2021,
  • [6] The Grunwald-Letnikov method for fractional differential equations
    Scherer, Rudolf
    Kalla, Shyam L.
    Tang, Yifa
    Huang, Jianfei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 902 - 917
  • [7] A continuous variant for Grunwald-Letnikov fractional derivatives
    Neel, Marie-Christine
    Abdennadher, Ali
    Solofoniaina, Joelson
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (12) : 2750 - 2760
  • [8] NUMERICAL SIMULATION OF THE FRACTIONAL-ORDER RoSSLER CHAOTIC SYSTEMS WITH GRuNWALD-LETNIKOV FRACTIONAL DERIVATIVE
    Li, Xiaoyu
    Wang, Yu-Lan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (08)
  • [9] A New Insight Into the Grunwald-Letnikov Discrete Fractional Calculus
    Wei, Yiheng
    Yin, Weidi
    Zhao, Yanting
    Wang, Yong
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (04):
  • [10] Convergence of the Grunwald-Letnikov scheme for time-fractional diffusion
    Gorenflo, R.
    Abdel-Rehim, E. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (02) : 871 - 881