Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale

被引:92
作者
Berman, Diana [1 ]
Deshmukh, Sanket A. [1 ]
Narayanan, Badri [1 ]
Sankaranarayanan, Subramanian K. R. S. [1 ]
Yan, Zhong [2 ]
Balandin, Alexander A. [2 ]
Zinovev, Alexander [3 ]
Rosenmann, Daniel [1 ]
Sumant, Anirudha V. [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Calif Riverside, Bourns Coll Engn, Dept Elect & Comp Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
[3] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
WALLED CARBON NANOTUBES; HEXAGONAL BORON-NITRIDE; EPITAXIAL GRAPHENE; MONOLAYER GRAPHENE; RAMAN-SPECTROSCOPY; DIRECT GROWTH; FILMS; ULTRANANOCRYSTALLINE; TRANSISTORS; CHEMISTRY;
D O I
10.1038/ncomms12099
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the process can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. In addition, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition [J].
Amara, H. ;
Bichara, C. ;
Ducastelle, F. .
PHYSICAL REVIEW LETTERS, 2008, 100 (05)
[2]   Are diamonds a MEMS' best friend? [J].
Auciello, Orlando ;
Pacheco, Sergio ;
Sumant, Anirudha V. ;
Gudeman, Chris ;
Sampath, Suresh ;
Datta, Arindom ;
Carpick, Robert W. ;
Adiga, Vivekananda P. ;
Zurcher, Peter ;
Ma, Zhenqiang ;
Yuan, Hao-Chih ;
Carlisle, John A. ;
Kabius, Bernd ;
Hiller, Jon ;
Srinivasan, Sudarsan .
IEEE MICROWAVE MAGAZINE, 2007, 8 (06) :61-75
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[4]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[5]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[7]   Iron-mediated growth of epitaxial graphene on SiC and diamond [J].
Cooil, S. P. ;
Song, F. ;
Williams, G. T. ;
Roberts, O. R. ;
Langstaff, D. P. ;
Jorgensen, B. ;
Hoydalsvik, K. ;
Breiby, D. W. ;
Wahlstrom, E. ;
Evans, D. A. ;
Wells, J. W. .
CARBON, 2012, 50 (14) :5099-5105
[8]   Epitaxial graphene [J].
de Heer, Walt A. ;
Berger, Claire ;
Wu, Xiaosong ;
First, Phillip N. ;
Conrad, Edward H. ;
Li, Xuebin ;
Li, Tianbo ;
Sprinkle, Michael ;
Hass, Joanna ;
Sadowski, Marcin L. ;
Potemski, Marek ;
Martinez, Gerard .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :92-100
[9]   Atomistic modelling of CVD synthesis of carbon nanotubes and graphene [J].
Elliott, James A. ;
Shibuta, Yasushi ;
Amara, Hakim ;
Bichara, Christophe ;
Neyts, Erik C. .
NANOSCALE, 2013, 5 (15) :6662-6676
[10]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/NMAT2382, 10.1038/nmat2382]