Influence of solidification conditions on chemical heterogeneities and dislocations patterning in additively manufactured 316L stainless steel

被引:20
作者
Depinoy, Sylvain [1 ]
机构
[1] PSL Univ, MAT Ctr Mat, Mines Paris, CNRS UMR 7633, BP 87, F-91003 Evry, France
关键词
Solidification; Dendrites; Dislocations; Microsegregations; 316L; ALLOYING ELEMENT VAPORIZATION; MICROSTRUCTURE; GROWTH; ORIGIN; STRENGTH; NETWORK; MODEL; WELD;
D O I
10.1016/j.mtla.2022.101472
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dendritic substructure of 316L stainless steel processed by Laser Powder Bed Fusion (L-PBF) is experimentally investigated on three specimens built with significantly different scanning speeds and solidification cooling rates. Microstructural features of interest are misorientations between dendrites, gradients of chemical composition and dislocations structures. Similar amplitudes of chemical heterogeneities are found for all three samples, possibly related to the conjunction of relatively low variations of solidification rates and large partition coefficients for the considered solute elements. No crystalline misorientations between neighboring dendrites are observed, implying that interdendritic dislocations are not geometrically necessary dislocations stemming from solidification but arise from thermomechanical straining during post-solidification cooling. Dislocations patterning appear to be closely correlated to the periodicity of microsegregations, hinting at an effect of the local chemistry. No simple HallPetch-like effect of the dendrite size is observed on compression tests, possibly due to different strengthening mechanisms depending on the dislocations structures.
引用
收藏
页数:14
相关论文
共 73 条
[1]   SELF-CONSISTENT THEORY OF DENDRITIC GROWTH WITH CONVECTION [J].
ANANTH, R ;
GILL, WN .
JOURNAL OF CRYSTAL GROWTH, 1991, 108 (1-2) :173-189
[2]   Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting [J].
Andreau, Olivier ;
Koutiri, Imade ;
Peyre, Patrice ;
Penot, Jean-Daniel ;
Saintier, Nicolas ;
Pessard, Etienne ;
De Terris, Thibaut ;
Dupuy, Corinne ;
Baudin, Thierry .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 264 :21-31
[3]   THE TRANSITION FROM SHORT-RANGE DIFFUSION-LIMITED TO COLLISION-LIMITED GROWTH IN ALLOY SOLIDIFICATION [J].
AZIZ, MJ ;
BOETTINGER, WJ .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :527-537
[4]   Interface attachment kinetics in alloy solidification [J].
Aziz, MJ .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1996, 27 (03) :671-686
[5]   CONTINUOUS GROWTH-MODEL FOR INTERFACE MOTION DURING ALLOY SOLIDIFICATION [J].
AZIZ, MJ ;
KAPLAN, T .
ACTA METALLURGICA, 1988, 36 (08) :2335-2347
[6]   Texture Analysis with MTEX - Free and Open Source Software Toolbox [J].
Bachmann, F. ;
Hielscher, R. ;
Schaeben, H. .
TEXTURE AND ANISOTROPY OF POLYCRYSTALS III, 2010, 160 :63-+
[7]   Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel [J].
Bertoli, Umberto Scipioni ;
MacDonald, Benjamin E. ;
Schoenung, Julie M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 739 :109-117
[8]   Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J].
Bertsch, K. M. ;
de Bellefon, G. Meric ;
Kuehl, B. ;
Thoma, D. J. .
ACTA MATERIALIA, 2020, 199 :19-33
[9]   Microsegregation Model Including Convection and Tip Undercooling: Application to Directional Solidification and Welding [J].
Billotte, Thomas ;
Daloz, Dominique ;
Rouat, Bernard ;
Tirand, Guillaume ;
Kennedy, Jacob R. ;
Robin, Vincent ;
Zollinger, Julien .
MATERIALS, 2018, 11 (07)
[10]   Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L [J].
Birnbaun, Andrew J. ;
Steuben, John C. ;
Barrick, Erin J. ;
Iliopoulos, Athanasios P. ;
Michopoulos, John G. .
ADDITIVE MANUFACTURING, 2019, 29