Optical vortex lattice: an exploitation of orbital angular momentum

被引:91
|
作者
Zhu, Liuhao [1 ,2 ]
Tang, Miaomiao [1 ]
Li, Hehe [1 ]
Tai, Yuping [3 ]
Li, Xinzhong [1 ,2 ]
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, Luoyang 471023, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
[3] Henan Univ Sci & Technol, Sch Chem Engn & Pharmaceut, Luoyang 471023, Peoples R China
基金
中国国家自然科学基金;
关键词
micro-particle manipulation; optical vortex; orbital angular momentum; physical optics; LIGHT; PARTICLE; ARRAY; GENERATION;
D O I
10.1515/nanoph-2021-0139
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only +/- 1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.
引用
收藏
页码:2487 / 2496
页数:10
相关论文
共 50 条
  • [41] Method for exploring the orbital angular momentum of an optical vortex beam with a triangular multipoint plate
    Liu, Yongxin
    Pu, Jixiong
    Lue, Baida
    APPLIED OPTICS, 2011, 50 (24) : 4844 - 4847
  • [42] Spatiotemporal coherence of GaN excitons excited by an optical vortex with multiple orbital angular momentum
    Shigematsu, Kyohhei
    Yamane, Keisaku
    Morita, Ryuji
    Toda, Yasunori
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [43] Dynamical Modulation of Transverse Orbital Angular Momentum in Highly Confined Spatiotemporal Optical Vortex
    Chen, Jian
    Kuai, Siyu
    Chen, Guoliang
    Yu, Lihua
    Zhan, Qiwen
    PHOTONICS, 2023, 10 (02)
  • [44] Identification of multimodal vortex optical orbital angular momentum in multimode fiber speckle patterns
    Zhang, Hangyu
    Li, ZiFei
    Zhang, LeiHong
    Yang, HaiMa
    Sun, Quan
    Zhang, DaWei
    OPTICS COMMUNICATIONS, 2024, 573
  • [45] Fluctuations of the orbital angular momentum of a laser beam, carrying an optical vortex, in the turbulent atmosphere
    Aksenov, V. P.
    Pogutsa, Ch. E.
    QUANTUM ELECTRONICS, 2008, 38 (04) : 343 - 348
  • [46] Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum
    Brasselet, Etienne
    Malinauskas, Mangirdas
    Zukauskas, Albertas
    Juodkazis, Saulius
    APPLIED PHYSICS LETTERS, 2010, 97 (21)
  • [47] Influence of random media on orbital angular momentum quantum states of optical vortex beams
    Yang, Donghui
    Hu, Zheng-Da
    Wang, Shuailing
    Zhu, Yun
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [48] Transformation of the vortex part of the orbital angular momentum in first-order optical systems
    Alieva, T
    Bastiaans, MJ
    RIAO/OPTILAS 2004: 5TH IBEROAMERICAN MEETING ON OPTICS AND 8TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, PTS 1-3: ICO REGIONAL MEETING, 2004, 5622 : 1138 - 1141
  • [49] The Optical Angular Momentum in a Vector Vortex Optical Field
    Chen, Rui-Pin
    PIERS 2014 GUANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2014, : 1870 - 1872
  • [50] Quark orbital angular momentum from lattice QCD
    Mathur, N
    Dong, SJ
    Liu, KF
    Mankiewicz, L
    Mukhopadhyay, NC
    PHYSICAL REVIEW D, 2000, 62 (11): : 1 - 5