Optical vortex lattice: an exploitation of orbital angular momentum

被引:91
|
作者
Zhu, Liuhao [1 ,2 ]
Tang, Miaomiao [1 ]
Li, Hehe [1 ]
Tai, Yuping [3 ]
Li, Xinzhong [1 ,2 ]
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, Luoyang 471023, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
[3] Henan Univ Sci & Technol, Sch Chem Engn & Pharmaceut, Luoyang 471023, Peoples R China
基金
中国国家自然科学基金;
关键词
micro-particle manipulation; optical vortex; orbital angular momentum; physical optics; LIGHT; PARTICLE; ARRAY; GENERATION;
D O I
10.1515/nanoph-2021-0139
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only +/- 1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.
引用
收藏
页码:2487 / 2496
页数:10
相关论文
共 50 条
  • [31] High-quality tunable optical vortex arrays with multiple states of orbital angular momentum
    Xu, Chao
    Chen, Xiao
    Cai, Yuanyuan
    Wang, Yiquan
    OPTICS AND LASER TECHNOLOGY, 2024, 169
  • [32] Orbital angular momentum of the vortex beams through a tilted lens
    Luo, Meilan
    Zhang, Zhaohui
    Shen, Donghui
    Zhao, Daomu
    OPTICS COMMUNICATIONS, 2017, 396 : 206 - 209
  • [33] Potential of vortex beams with orbital angular momentum modulation for deep-space optical communication
    Wang, Xiaorui
    Liu, Yejun
    Guo, Lei
    Li, Hui
    OPTICAL ENGINEERING, 2014, 53 (05)
  • [34] Modulation of orbital angular momentum of vortex beam based on ordered pinhole screens
    Zhang, Jinlong
    Yang, Kaibo
    Luo, Hao
    Li, Peng
    Wen, Feng
    Gu, Yuzong
    Wu, Zhenkun
    RESULTS IN PHYSICS, 2023, 51
  • [35] Intelligent orbital angular momentum recognition of a scattered vortex beam
    Situ GuoHai
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2022, 52 (06)
  • [36] Quantitative orbital angular momentum measurement of perfect vortex beams
    Pinnell, Jonathan
    Rodriguez-Fajardo, Valeria
    Forbes, Andrew
    OPTICS LETTERS, 2019, 44 (11) : 2736 - 2739
  • [37] Topological charge and orbital angular momentum of optical signals with asymmetric optical vortices
    Kovalev, Alexey A.
    Kotlyar, Victor V.
    OPTICAL TECHNOLOGIES FOR TELECOMMUNICATIONS 2020, 2021, 11793
  • [38] Chiral Lithography with Vortex Non-diffracted Laser for Orbital Angular Momentum Detection
    Li, Jiaqun
    Yan, Jianfeng
    Jiang, Lan
    Qu, Liangti
    LASER & PHOTONICS REVIEWS, 2024, 18 (05)
  • [39] A Review of Orbital Angular Momentum Vortex Beams Generation: From Traditional Methods to Metasurfaces
    Zhang, Kuang
    Wang, Yuxiang
    Yuan, Yueyi
    Burokur, Shah Nawaz
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [40] Creation of twisted terahertz waves carrying orbital angular momentum via a plasma vortex
    Sobhani, Hassan
    Rooholamininejad, Hosein
    Bahrampour, Alireza
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (29)