On the number and distribution of limit cycles in a cubic system

被引:16
作者
Maoan, H
Zhang, TH [1 ]
Hong, Z
机构
[1] Shandong Univ Sci & Technol, Dept Appl Math, Shandong 271019, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2004年 / 14卷 / 12期
基金
中国国家自然科学基金;
关键词
limit cycle; homoclinic bifurcation; heteroclinic bifurcation; Hamiltonian system;
D O I
10.1142/S0218127404011934
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the number of limit cycles in a cubic system. Eleven limit cycles are found and two different distributions are given by using the methods of bifurcation theory and qualitative analysis.
引用
收藏
页码:4285 / 4292
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 1986, TRANSLATIONS MATH MO
[2]  
Bautin N., 1952, MAT SBORNIK, V72, P181
[3]   On the number of limit cycles in double homoclinic bifurcations [J].
Han, M ;
Chen, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (09) :914-928
[4]   A study on the existence of limit cycles of a planar system with third-degree polynomials [J].
Han, M ;
Lin, Y ;
Yu, P .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (01) :41-60
[5]   On the stability of double homoclinic and heteroclinic cycles [J].
Han, M ;
Hu, SC ;
Liu, XB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (05) :701-713
[6]   Cyclicity of planar homoclinic loops and quadratic integrable systems [J].
Han, MA .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (12) :1247-1258
[7]  
Han MA, 1999, SCI CHINA SER A, V42, P605
[8]  
Li J., 1991, PUBL MAT, V35, P487
[9]  
LI JB, 1987, CHINESE ANN MATH B, V8, P391
[10]   Hilbert's 16th problem and bifurcations of planar polynomial vector fields [J].
Li, JB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :47-106