OPTIMIZATION APPROACH FOR THE MONGE-AMPERE EQUATION

被引:1
作者
Ben Belgacem, Fethi [1 ]
机构
[1] Fac Sci Tunis, Dept Math, Lab EDP LR03ES04, Tunis 1060, Tunisia
关键词
elliptic Monge-Ampere equation; gradient conjugate method; finite element Galerkin method; NONLINEAR ELLIPTIC-EQUATIONS; DIRICHLET BOUNDARY-CONDITIONS; LEAST-SQUARES APPROACH; NUMERICAL-SOLUTION; 2ND-ORDER;
D O I
10.1016/S0252-9602(18)30814-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study a method for the numerical solution of the elliptic Monge-Ampere equation with Dirichlet boundary conditions. We formulate the Monge-Ampere equation as an optimization problem. The latter involves a Poisson Problem which is solved by the finite element Galerkin method and the minimum is computed by the conjugate gradient algorithm. We also present some numerical experiments.
引用
收藏
页码:1285 / 1295
页数:11
相关论文
共 39 条
  • [11] A Liouville theorem for solutions of the Monge-Ampere equation with periodic data
    Caffarelli, L
    Li, YY
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01): : 97 - 120
  • [12] Caffarelli L, 1985, REV MAT IBEROAM, V2, P19
  • [13] Caffarelli L, 1984, COMMUN PUR APPL MATH, V17, P396
  • [14] CAFFARELLI L. A., 1999, Contemporary Mathematics, V226, P13, DOI 10.1090/conm/226/03233
  • [15] Chang A., 2002, Proceedings_for_ICM_2002,_, P189
  • [16] Ciarlet P., 2002, Classics in Appl. Math., V40
  • [17] Courant R., 1962, METHODS MATH PHYS, V2
  • [18] Cullen M J P, 1999, CONT MATH, V226, P33
  • [19] Dean EJ, 2008, COMPUT METH APPL SCI, V16, P43
  • [20] Numerical methods for fully nonlinear elliptic equations of the Monge-Ampere type
    Dean, EJ
    Glowinski, R
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (13-16) : 1344 - 1386