OPTIMIZATION APPROACH FOR THE MONGE-AMPERE EQUATION

被引:1
作者
Ben Belgacem, Fethi [1 ]
机构
[1] Fac Sci Tunis, Dept Math, Lab EDP LR03ES04, Tunis 1060, Tunisia
关键词
elliptic Monge-Ampere equation; gradient conjugate method; finite element Galerkin method; NONLINEAR ELLIPTIC-EQUATIONS; DIRICHLET BOUNDARY-CONDITIONS; LEAST-SQUARES APPROACH; NUMERICAL-SOLUTION; 2ND-ORDER;
D O I
10.1016/S0252-9602(18)30814-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study a method for the numerical solution of the elliptic Monge-Ampere equation with Dirichlet boundary conditions. We formulate the Monge-Ampere equation as an optimization problem. The latter involves a Poisson Problem which is solved by the finite element Galerkin method and the minimum is computed by the conjugate gradient algorithm. We also present some numerical experiments.
引用
收藏
页码:1285 / 1295
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 2002, P ICM, DOI DOI 10.1007/S00205-008-0211-8
[2]  
[Anonymous], 2002, P INT C MATH
[4]  
Aubin T., 1982, Monge-Ampere Equations, V252
[5]  
Benamou J D, 2002, INT J NUMER METH FLU
[6]   TWO NUMERICAL METHODS FOR THE ELLIPTIC MONGE-AMPERE EQUATION [J].
Benamou, Jean-David ;
Froese, Brittany D. ;
Oberman, Adam M. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04) :737-758
[7]   On finite element methods for fully nonlinear elliptic equations of second order [J].
Boehmer, Klaus .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) :1212-1249
[8]   Deformations of density functions in molecular quantum chemistry [J].
Bokanowski, O ;
Grebert, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (04) :1553-1573
[9]   Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations [J].
Cabré, X .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (02) :331-359
[10]  
Caffarell L, 1995, FULLY NONLINEAR ELLI