On modules of bounded multiplicities for the symplectic algebras

被引:28
作者
Britten, DJ [1 ]
Lemire, FW [1 ]
机构
[1] Univ Windsor, Dept Math, Windsor, ON N9B 3P4, Canada
关键词
D O I
10.1090/S0002-9947-99-02338-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Simple infinite dimensional highest weight modules having bounded weight multiplicities are classified as submodules of a tensor product. Also, it is shown that a simple torsion free module of finite degree tensored with a finite dimensional module is completely reducible.
引用
收藏
页码:3413 / 3431
页数:19
相关论文
共 13 条
[1]   Modules with bounded weight multiplicities for simple Lie algebras [J].
Benkart, G ;
Britten, D ;
Lemire, F .
MATHEMATISCHE ZEITSCHRIFT, 1997, 225 (02) :333-353
[2]   A CLASSIFICATION OF SIMPLE LIE MODULES HAVING A 1-DIMENSIONAL WEIGHT SPACE [J].
BRITTEN, DJ ;
LEMIRE, FW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (02) :683-697
[3]   SIMPLE C-N MODULES WITH MULTIPLICITIES-1 AND APPLICATIONS [J].
BRITTEN, DJ ;
HOOPER, J ;
LEMIRE, FW .
CANADIAN JOURNAL OF PHYSICS, 1994, 72 (7-8) :326-335
[4]   SIMPLE A(2)-MODULES WITH A FINITE-DIMENSIONAL WEIGHT SPACE [J].
BRITTEN, DJ ;
LEMIRE, FW ;
FUTORNY, VM .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (02) :467-510
[5]   The torsion free Pieri formula [J].
Britten, DJ ;
Lemire, FW .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (02) :266-289
[6]  
DIXMIER J, 1972, B SC MATH, V96, P339
[7]  
Dixmier Jacques, 1974, ALGEBRES ENVELOPPANT
[9]  
Jantzen J.C., 1979, LECT NOTES MATH, V750
[10]   TENSOR PRODUCT OF A FINITE AND AN INFINITE DIMENSIONAL REPRESENTATION [J].
KOSTANT, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 20 (04) :257-285