CONFOLD2: improved contact-driven ab initio protein structure modeling

被引:50
作者
Adhikari, Badri [1 ]
Cheng, Jianlin [2 ]
机构
[1] Univ Missouri, Dept Math & Comp Sci, St Louis, MO 63121 USA
[2] Univ Missouri, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Contacts; Protein folding; CONFOLD; Model selection; PREDICTIONS; CASP11;
D O I
10.1186/s12859-018-2032-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Contact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be developed. Results: We develop an improved contact-driven protein modelling method, CONFOLD2, and study how it may be effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and then clusters the models to obtain the top five models. CONFOLD2 obtains an average reconstruction accuracy of 0.57 TM-score for the 150 proteins in the PSICOV contact prediction dataset. When benchmarked on the CASP11 contacts predicted using CONSIP2 and CASP12 contacts predicted using Raptor-X, CONFOLD2 achieves a mean TM-score of 0.41 on both datasets. Conclusion: CONFOLD2 allows to quickly generate top five structural models for a protein sequence when its secondary structures and contacts predictions at hand. The source code of CONFOLD2 is publicly available at https://github.com/multicom-toolbox/CONFOLD2/.
引用
收藏
页数:5
相关论文
共 14 条
  • [1] ConEVA: a toolbox for comprehensive assessment of protein contacts
    Adhikari, Badri
    Nowotny, Jackson
    Bhattacharya, Debswapna
    Hou, Jie
    Cheng, Jianlin
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [2] CONFOLD: Residue-residue contact-guided ab initio protein folding
    Adhikari, Badri
    Bhattacharya, Debswapna
    Cao, Renzhi
    Cheng, Jianlin
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2015, 83 (08) : 1436 - 1449
  • [3] SCRATCH: a protein structure and structural feature prediction server
    Cheng, J
    Randall, AZ
    Sweredoski, MJ
    Baldi, P
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 : W72 - W76
  • [4] PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments
    Jones, David T.
    Buchan, Daniel W. A.
    Cozzetto, Domenico
    Pontil, Massimiliano
    [J]. BIOINFORMATICS, 2012, 28 (02) : 184 - 190
  • [5] Jones DT, 2014, BIOINFORMATICS, V31, P791
  • [6] Accurate contact predictions using covariation techniques and machine learning
    Kosciolek, Tomasz
    Jones, David T.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2016, 84 : 145 - 151
  • [7] De Novo Structure Prediction of Globular Proteins Aided by Sequence Variation-Derived Contacts
    Kosciolek, Tomasz
    Jones, David T.
    [J]. PLOS ONE, 2014, 9 (03):
  • [8] Analysis of free modeling predictions by RBO aleph in CASP11
    Mabrouk, Mahmoud
    Werner, Tim
    Schneider, Michael
    Putz, Ines
    Brock, Oliver
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2016, 84 : 87 - 104
  • [9] Michel M, 2017, BIORXIV
  • [10] PconsFold: improved contact predictions improve protein models
    Michel, Mirco
    Hayat, Sikander
    Skwark, Marcin J.
    Sander, Chris
    Marks, Debora S.
    Elofsson, Arne
    [J]. BIOINFORMATICS, 2014, 30 (17) : I482 - I488