Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering

被引:150
|
作者
Yim, Dami [1 ,2 ]
Sathiyamoorthi, Praveen [1 ,2 ]
Hong, Soon-Jik [3 ,4 ]
Kim, Hyoung Seop [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci Engn, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Ctr High Entropy Alloys, Pohang 37673, South Korea
[3] Kongju Natl Univ, Div Adv Mat Engn, Cheonan 32588, South Korea
[4] Kongju Natl Univ, Inst Rare Met, Cheonan 32588, South Korea
基金
新加坡国家研究基金会;
关键词
High-entropy alloy; Powder metallurgy; Nano-composites; Atomization; TiC particles; MATRIX COMPOSITE; DEFORMATION-BEHAVIOR; NANO-PARTICLES; MICROSTRUCTURE; COMPACTION; STRENGTH; ENERGY;
D O I
10.1016/j.jallcom.2018.12.119
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the TiC-reinforced CoCrFeMnNi high-entropy alloy (HEA) composite was fabricated using water atomization (WA), mechanical milling (MM), and spark plasma sintering (SPS). The microstructural evolution and mechanical properties of TiC-reinforced HEA composite are investigated using electron backscatter diffraction, transmission electron microscopy, and room temperature compression tests. The addition of 5 wt% of TiC nano-particles to CoCrFeMnNi HEA resulted in fine grain size, high yield strength, and high strain hardening. The average grain size achieved for alloys with and without TiC after sintering is 5.1 mu m and 10.6 mu m, respectively. The addition of TiC increases the compressive yield strength from similar to 507 MPa to similar to 698 MPa and compressive fracture strength from similar to 1527 MPa to similar to 2216 MPa, without sacrificing the ductility. The strengthening behavior of TiC-reinforced CoCrFeMnNi HEA composite is quantitatively discussed based on grain boundary strengthening, dislocation strengthening, and dispersion strengthening. The role of TiC nano-particles in the strain hardening improvement is investigated with respect to the dislocation-particle interaction and consequently increased dislocation density. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:389 / 396
页数:8
相关论文
共 50 条
  • [41] Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering
    Luo, Wenyan
    Liu, Yunzhong
    Luo, Yang
    Wu, Min
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 754 : 163 - 170
  • [42] Microstructural and mechanical properties of NiCoCrAlSi high entropy alloy fabricated by mechanical alloying and spark plasma sintering
    Shahbazkhan, Armita
    Sabet, Hamed
    Abbasi, Mehrdad
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896
  • [43] Microstructure and mechanical properties of CoCrFeNiTa high entropy alloy prepared by mechanical alloying and spark plasma sintering
    Tang, Xingchang
    Hou, Yuanyuan
    Wang, Canglong
    Liu, Yiwen
    Meng, Zhaocang
    Wang, Yinlong
    Cheng, Ganghu
    Zhou, Weilian
    La, Peiqing
    MATERIALS CHARACTERIZATION, 2024, 210
  • [44] Fabrication and performance assessment of CuFeNiMnTi high entropy alloy through mechanical alloying and spark plasma sintering
    Adabavazeh, Z.
    Hosseini, S. H.
    Karimzadeh, F.
    Abbasi, M. H.
    MATERIALS TODAY COMMUNICATIONS, 2025, 42
  • [45] Effect of Zr Addition on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy Synthesized by Spark Plasma Sintering
    Zhang, Hongling
    Zhang, Lei
    Liu, Xinyu
    Chen, Qiang
    Xu, Yi
    ENTROPY, 2018, 20 (11)
  • [46] Dynamic spall properties of an additively manufactured, high-entropy alloy (CoCrFeMnNi)
    Euser, V. K.
    Mangan, A. S.
    Jones, D. R.
    Martinez, D. T.
    Steckley, T. E.
    Agrawal, A. K.
    Thoma, D. J.
    Fensin, S. J.
    MATERIALIA, 2024, 33
  • [47] The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials
    Waseem, Owais Ahmed
    Lee, Junho
    Lee, Hyuck Mo
    Ryu, Ho Jin
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 210 : 87 - 94
  • [48] Laser additive manufacturing of nano-TiC particles reinforced CoCrFeMnNi high-entropy alloy matrix composites with high strength and ductility
    Chen, Hongyu
    Lu, Tiwen
    Wang, Yonggang
    Liu, Yang
    Shi, Tongya
    Prashanth, Konda Gokuldoss
    Kosiba, Konrad
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 833
  • [49] Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr
    Lukac, Frantisek
    Dudr, Martin
    Musalek, Radek
    Klecka, Jakub
    Cinert, Jakub
    Cizek, Jan
    Chraska, Tomas
    Cizek, Jakub
    Melikhova, Oksana
    Kuriplach, Jan
    Zyka, Jiri
    Malek, Jaroslav
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 3247 - 3257
  • [50] Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering
    Xia, Hui-min
    Zhang, Lan
    Zhu, Yong-chao
    Li, Na
    Sun, Yu-qi
    Zhang, Ji-dong
    Ma, Hui-zhong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2020, 27 (09) : 1295 - 1300