Topology Adaptive Graph Estimation in High Dimensions

被引:0
作者
Lederer, Johannes [1 ]
Mueller, Christian L. [2 ,3 ,4 ]
机构
[1] Ruhr Univ Bochum, Dept Math, Univ Str 150, D-44801 Bochum, Germany
[2] Flatiron Inst, Ctr Computat Math, New York, NY 10010 USA
[3] LMU Muunchen, Dept Stat, D-80539 Munich, Germany
[4] Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Neuherberg, Germany
关键词
graphical models; tuning parameters; high-dimensional statistics; INVERSE COVARIANCE ESTIMATION; MODEL SELECTION; PREDICTION; REGRESSION;
D O I
10.3390/math10081244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce Graphical TREX (GTREX), a novel method for graph estimation in high-dimensional Gaussian graphical models. By conducting neighborhood selection with TREX, GTREX avoids tuning parameters and is adaptive to the graph topology. We compared GTREX with standard methods on a new simulation setup that was designed to assess accurately the strengths and shortcomings of different methods. These simulations showed that a neighborhood selection scheme based on Lasso and an optimal (in practice unknown) tuning parameter outperformed other standard methods over a large spectrum of scenarios. Moreover, we show that GTREX can rival this scheme and, therefore, can provide competitive graph estimation without the need for tuning parameter calibration.
引用
收藏
页数:10
相关论文
共 27 条
[1]  
Banerjee O, 2008, J MACH LEARN RES, V9, P485
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Prediction error bounds for linear regression with the TREX [J].
Bien, Jacob ;
Gaynanova, Irina ;
Lederer, Johannes ;
Mueller, Christian L. .
TEST, 2019, 28 (02) :451-474
[4]   Non-Convex Global Minimization and False Discovery Rate Control for the TREX [J].
Bien, Jacob ;
Gaynanova, Irina ;
Lederer, Johannes ;
Muller, Christian L. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) :23-33
[5]   Optimal two-step prediction in regression [J].
Chetelat, Didier ;
Lederer, Johannes ;
Salmon, Joseph .
ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01) :2519-2546
[6]   Perspective functions: Proximal calculus and applications in high-dimensional statistics [J].
Combettes, Patrick L. ;
Muller, Christian L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) :1283-1306
[7]  
De Canditiis D., 2019, ARXIV190203116
[8]   Sparse inverse covariance estimation with the graphical lasso [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Robert .
BIOSTATISTICS, 2008, 9 (03) :432-441
[9]   Inferring cellular networks using probabilistic graphical models [J].
Friedman, N .
SCIENCE, 2004, 303 (5659) :799-805
[10]  
Hsieh C.J., 2011, SPARSE INVERSE COVAR, V24, P1