Thin domains with non-smooth periodic oscillatory boundaries

被引:27
|
作者
Arrieta, Jose M. [1 ,2 ]
Villanueva-Pesqueira, Manuel [1 ]
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
Thin domain; Oscillatory boundary; Homogenization; Unfolding method; ASYMPTOTIC-BEHAVIOR; ROUGH BOUNDARY; ELASTIC RODS; HOMOGENIZATION; PLATE; JUNCTION; EQUATIONS; FAMILY;
D O I
10.1016/j.jmaa.2016.08.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study in detail how to adapt the unfolding operator method to thin domains with periodic oscillatory boundaries. We present the unfolding method as a general approach which allows us to analyze the behavior of the solutions of a Neumann problem for equation -triangle u+u = f posed in two-dimensional thin domains with an oscillatory boundary. Assuming very mild hypothesis on the regularity of the oscillatory boundary we obtain the homogenized limit problem and corrector results for the three different rusFts depending on the order of the period of the oscillations. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 164
页数:35
相关论文
共 50 条
  • [1] SCATTERING THEORY FOR DOMAINS WITH NON-SMOOTH BOUNDARIES
    LAX, PD
    PHILLIPS, RS
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1978, 68 (02) : 93 - 98
  • [2] Random fractal boundaries of different attracting domains in the phase space of a stochastic non-smooth oscillatory system
    Lei, Hua
    Gan, Chun-Biao
    Xie, Chao-Yong
    Gongcheng Lixue/Engineering Mechanics, 2010, 27 (03): : 1 - 5
  • [3] LOCALIZATION EFFECT FOR DIRICHLET EIGENFUNCTIONS IN THIN NON-SMOOTH DOMAINS
    Nazarov, S. A.
    Perez, E.
    Taskinen, J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (07) : 4787 - 4829
  • [4] ALMOST-PERIODIC HOMOGENIZATION OF ELLIPTIC PROBLEMS IN NON-SMOOTH DOMAINS
    Geng, Jun
    Shi, Bojing
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (10) : 4339 - 4352
  • [5] On nonlinear inclusions in non-smooth domains
    Ben-El-Mechaiekh H.
    Arabian Journal of Mathematics, 2012, 1 (4) : 395 - 416
  • [6] Hessian equations in non-smooth domains
    Colesanti, A
    Salani, P
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (06) : 803 - 812
  • [7] Hyperconvexity of non-smooth pseudoconvex domains
    Wang, Xu
    ANNALES POLONICI MATHEMATICI, 2014, 111 (01) : 1 - 11
  • [8] THE DIRICHLET PROBLEM IN NON-SMOOTH DOMAINS
    JERISON, DS
    KENIG, CE
    ANNALS OF MATHEMATICS, 1981, 113 (02) : 367 - 382
  • [9] Weighted inequalities for gradients on non-smooth domains
    Sweezy, Caroline
    Wilson, J. Michael
    DISSERTATIONES MATHEMATICAE, 2010, (471) : 5 - +
  • [10] Boundary value problems for analytic and harmonic functions of Smirnov classes in domains with non-smooth boundaries
    Kokilashvili, V
    Meshveliani, Z
    Paatashvili, V
    FACTORIZATION, SINGULAR OPERATORS AND RELATED PROBLEMS, PROCEEDINGS, 2003, : 175 - 196