Nodal domains of a non-separable problem-the right-angled isosceles triangle

被引:12
作者
Aronovitch, Amit [1 ]
Band, Ram [1 ,2 ]
Fajman, David [3 ]
Gnutzmann, Sven [4 ]
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[3] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
RESOLVING ISOSPECTRAL DRUMS; RANDOM WAVE-FUNCTIONS; PERCOLATION; LINES;
D O I
10.1088/1751-8113/45/8/085209
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the nodal set of eigenfunctions of the Laplace operator on the right-angled isosceles triangle. A local analysis of the nodal pattern provides an algorithm for computing the number nu(n) of nodal domains for any eigenfunction. In addition, an exact recursive formula for the number of nodal domains is found to reproduce all existing data. Eventually, we use the recursion formula to analyse a large sequence of nodal counts statistically. Our analysis shows that the distribution of nodal counts for this triangular shape has a much richer structure than the known cases of regular separable shapes or completely irregular shapes. Furthermore, we demonstrate that the nodal count sequence contains information about the periodic orbits of the corresponding classical ray dynamics.
引用
收藏
页数:18
相关论文
共 30 条
[1]   Nodal domain distribution for a nonintegrable two-dimensional anharmonic oscillator [J].
Aiba, H ;
Suzuki, T .
PHYSICAL REVIEW E, 2005, 72 (06)
[2]  
[Anonymous], 1802, AKUSTIK
[3]  
[Anonymous], J MATH PURES APPL J
[4]  
Aronovitch A, 2012, NODAL DOMAINS UNPUB
[5]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[6]   Nodal domains statistics: A criterion for quantum chaos [J].
Blum, G ;
Gnutzmann, S ;
Smilansky, U .
PHYSICAL REVIEW LETTERS, 2002, 88 (11) :4-114101
[7]   Random wavefunctions and percolation [J].
Bogomolny, E. ;
Schmit, C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (47) :14033-14043
[8]   SLE description of the nodal lines of random wavefunctions [J].
Bogomolny, E. ;
Dubertrand, R. ;
Schmit, C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (03) :381-395
[9]   Percolation model or nodal domains of chaotic wave functions [J].
Bogomolny, E ;
Schmit, C .
PHYSICAL REVIEW LETTERS, 2002, 88 (11) :4
[10]   Comment on 'Resolving isospectral 'drums' by counting nodal domains' [J].
Bruening, J. ;
Klawonn, D. ;
Puhle, C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (50) :15143-15147