Eliminating redundancy and irrelevance using a new MLP-based feature selection method

被引:54
作者
Gasca, E
Sánchez, JS
Alonso, R
机构
[1] Univ Jaume 1, Dept Llenguatges & Sist Informat, Castellon de La Plana 12071, Spain
[2] Inst Tecnol Toluca, Lab Reconocimiento Patrones, Metepec 52140, Edomex, Mexico
关键词
feature selection; multilayer perceptron; relative contribution;
D O I
10.1016/j.patcog.2005.09.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel feature selection method based on the use of a multilayer perceptron (MLP). The algorithm identifies a subset of relevant, non-redundant attributes for supervised pattern classification by estimating the relative contribution of the input units (those representing the attributes) to the output neurons (those corresponding to the problem classes). The experimental results suggest that the proposed method works well on a variety of real-world domains. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:313 / 315
页数:3
相关论文
共 5 条
  • [1] Variable selection with neural networks
    Cibas, T
    Soulie, FF
    Gallinari, P
    Raudys, S
    [J]. NEUROCOMPUTING, 1996, 12 (2-3) : 223 - 248
  • [2] Bayes-optimality motivated linear and multilayered perceptron-based dimensionality reduction
    Lotlikar, R
    Kothari, R
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (02): : 452 - 463
  • [3] An empirical measure of element contribution in neural networks
    Mak, B
    Blanning, RW
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (04): : 561 - 564
  • [4] Neural-network feature selector
    Setiono, R
    Liu, H
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03): : 654 - 662
  • [5] Feature selection with neural networks
    Verikas, A
    Bacauskiene, M
    [J]. PATTERN RECOGNITION LETTERS, 2002, 23 (11) : 1323 - 1335