Evaluating uncertainty in mapping forest carbon with airborne LiDAR

被引:185
|
作者
Mascaro, Joseph [1 ,2 ]
Detto, Matteo [2 ]
Asner, Gregory P. [1 ]
Muller-Landau, Helene C. [2 ]
机构
[1] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
[2] Smithsonian Trop Res Inst, Balboa, Panama
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
Aboveground biomass; Crown radius; Light detection and ranging; Tree allometry; Tropical forest carbon stocks; Spatial autocorrelation; BARRO-COLORADO ISLAND; TROPICAL FOREST; ABOVEGROUND BIOMASS;
D O I
10.1016/j.rse.2011.07.019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Airborne LiDAR is increasingly used to map carbon stocks in tropical forests, but our understanding of mapping errors is constrained by the spatial resolution (i.e., plot size) used to calibrate LiDAR with field data (typically 0.1-0.36 ha). Reported LiDAR errors range from 17 to 40 Mg C ha(-1), but should be lower at coarser resolutions because relative errors are expected to scale with (plot area)(-1/2). We tested this prediction empirically using a 50-ha plot with mapped trees, allowing an assessment of LiDAR prediction errors at multiple spatial resolutions. We found that errors scaled approximately as expected, declining by 38% (compared to 40% predicted from theory) from 0.36- to 1-ha resolution. We further reduced errors at all spatial resolutions by accounting for tree crowns that are bisected by plot edges (not typically done in forestry), and collectively show that airborne LiDAR can map carbon stocks with 10% error at 1-ha resolution a level comparable to the use of field plots alone. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3770 / 3774
页数:5
相关论文
共 50 条
  • [31] Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data
    Chen, Qi
    Lu, Dengsheng
    Keller, Michael
    dos-Santos, Maiza Nara
    Bolfe, Edson Luis
    Feng, Yunyun
    Wang, Changwei
    REMOTE SENSING, 2016, 8 (01)
  • [32] Evaluating Variable Selection and Machine Learning Algorithms for Estimating Forest Heights by Combining Lidar and Hyperspectral Data
    Arjasakusuma, Sanjiwana
    Swahyu Kusuma, Sandiaga
    Phinn, Stuart
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (09)
  • [33] Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America
    Margolis, Hank A.
    Nelson, Ross F.
    Montesano, Paul M.
    Beaudoin, Andre
    Sun, Guoqing
    Andersen, Hans-Erik
    Wulder, Michael A.
    CANADIAN JOURNAL OF FOREST RESEARCH, 2015, 45 (07) : 838 - 855
  • [34] Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery
    Garcia, Mariano
    Saatchi, Sassan
    Ustin, Susan
    Balzter, Heiko
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 66 : 159 - 173
  • [35] Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR
    Mariano Garcia
    Sassan Saatchi
    Antonio Ferraz
    Carlos Alberto Silva
    Susan Ustin
    Alexander Koltunov
    Heiko Balzter
    Carbon Balance and Management, 12
  • [36] Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure
    Vincent, G.
    Sabatier, D.
    Blanc, L.
    Chave, J.
    Weissenbacher, E.
    Pelissier, R.
    Fonty, E.
    Molino, J. -F.
    Couteron, P.
    REMOTE SENSING OF ENVIRONMENT, 2012, 125 : 23 - 33
  • [37] Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar
    Holm, Soren
    Nelson, Ross
    Stahl, Goran
    REMOTE SENSING OF ENVIRONMENT, 2017, 197 : 85 - 97
  • [38] Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data
    Gonzalez-Jaramillo, Victor
    Fries, Andreas
    Zeilinger, Joerg
    Homeier, Juergen
    Paladines-Benitez, Jhoana
    Bendix, Joerg
    REMOTE SENSING, 2018, 10 (05)
  • [39] Interpretation of Forest Resources at the Individual Tree Level in Japanese Conifer Plantations Using Airborne LiDAR Data
    Deng, Songqiu
    Katoh, Masato
    REMOTE SENSING, 2016, 8 (03)
  • [40] Modeling pine forest growing stock volume in subtropical regions of China using airborne Lidar data
    Lan, Zige
    Jiang, Xiandie
    Li, Guiying
    Lu, Yagang
    Yao, Hongwen
    Lu, Dengsheng
    GISCIENCE & REMOTE SENSING, 2025, 62 (01)