Evaluating uncertainty in mapping forest carbon with airborne LiDAR

被引:185
|
作者
Mascaro, Joseph [1 ,2 ]
Detto, Matteo [2 ]
Asner, Gregory P. [1 ]
Muller-Landau, Helene C. [2 ]
机构
[1] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
[2] Smithsonian Trop Res Inst, Balboa, Panama
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
Aboveground biomass; Crown radius; Light detection and ranging; Tree allometry; Tropical forest carbon stocks; Spatial autocorrelation; BARRO-COLORADO ISLAND; TROPICAL FOREST; ABOVEGROUND BIOMASS;
D O I
10.1016/j.rse.2011.07.019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Airborne LiDAR is increasingly used to map carbon stocks in tropical forests, but our understanding of mapping errors is constrained by the spatial resolution (i.e., plot size) used to calibrate LiDAR with field data (typically 0.1-0.36 ha). Reported LiDAR errors range from 17 to 40 Mg C ha(-1), but should be lower at coarser resolutions because relative errors are expected to scale with (plot area)(-1/2). We tested this prediction empirically using a 50-ha plot with mapped trees, allowing an assessment of LiDAR prediction errors at multiple spatial resolutions. We found that errors scaled approximately as expected, declining by 38% (compared to 40% predicted from theory) from 0.36- to 1-ha resolution. We further reduced errors at all spatial resolutions by accounting for tree crowns that are bisected by plot edges (not typically done in forestry), and collectively show that airborne LiDAR can map carbon stocks with 10% error at 1-ha resolution a level comparable to the use of field plots alone. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3770 / 3774
页数:5
相关论文
共 50 条
  • [21] A brief overview and perspective of using airborne Lidar data for forest biomass estimation
    Lu, Dengsheng
    Jiang, Xiandie
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2024, 15 (01) : 1 - 24
  • [22] Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR
    Ferreira, Leilson
    Bias, Edilson de Souza
    Barros, Quetila Souza
    Padua, Luis
    Matricardi, Eraldo Aparecido Trondoli
    Sousa, Joaquim J.
    FORESTS, 2025, 16 (01):
  • [23] Estimation of Above-Ground Forest Biomass in Nepal by the Use of Airborne LiDAR, and Forest Inventory Data
    Bahadur, K. C. Yam
    Liu, Qijing
    Saud, Pradip
    Gaire, Damodar
    Adhikari, Hari
    LAND, 2024, 13 (02)
  • [24] ESTIMATING STAND-LEVEL STRUCTURAL AND BIOPHYSICAL VARIABLES OF LOWLAND DIPTEROCARP FOREST USING AIRBORNE LIDAR DATA
    Muhamad-Afizzul, M.
    Siti-Yasmin, Y.
    Hamdan, O.
    Tan, S. A.
    JOURNAL OF TROPICAL FOREST SCIENCE, 2019, 31 (03) : 312 - 323
  • [25] Evaluating the uncertainty of Landsat-derived vegetation indices in quantifying forest fuel treatments using bi-temporal LiDAR data
    Ma, Qin
    Su, Yanjun
    Luo, Laiping
    Li, Le
    Kelly, Maggi
    Guo, Qinghua
    ECOLOGICAL INDICATORS, 2018, 95 : 298 - 310
  • [26] Mapping the spatial pattern of temperate forest above ground biomass by integrating airborne LiDAR with Radarsat-2 imagery via geostatistical models
    Li, Wang
    Niu, Zheng
    Gao, Shuai
    Wang, Cheng
    LIDAR REMOTE SENSING FOR ENVIRONMENTAL MONITORING XIV, 2014, 9262
  • [27] Forest biomass and volume estimation using airborne LiDAR in a cool-temperate forest of northern Hokkaido, Japan
    Takagi, Kentaro
    Yone, Yasumichi
    Takahashi, Hiroyuki
    Sakai, Rei
    Hojyo, Hajime
    Kamiura, Tatsuya
    Nomura, Mutsumi
    Liang, Naishen
    Fukazawa, Tatsuya
    Miya, Hisashi
    Yoshida, Toshiya
    Sasa, Kaichiro
    Fujinuma, Yasumi
    Murayama, Takeshi
    Oguma, Hiroyuki
    ECOLOGICAL INFORMATICS, 2015, 26 : 54 - 60
  • [28] Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data
    Hu, Tianyu
    Su, Yanjun
    Xue, Baolin
    Liu, Jin
    Zhao, Xiaoqian
    Fang, Jingyun
    Guo, Qinghua
    REMOTE SENSING, 2016, 8 (07)
  • [29] IMPROVING CARBON ESTIMATION OF LARGE TROPICAL TREES BY LINKING AIRBORNE LIDAR CROWN SIZE TO FIELD INVENTORY
    Ferraz, Antonio
    Saatchi, Sassan
    Kellner, James
    Clark, David
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8789 - 8792
  • [30] An IPCC-Compliant Technique for Forest Carbon Stock Assessment Using Airborne LiDAR-Derived Tree Metrics and Competition Index
    Lin, Chinsu
    Thomson, Gavin
    Popescu, Sorin C.
    REMOTE SENSING, 2016, 8 (06)