Oscillation Theorems for Advanced Differential Equations withp-Laplacian Like Operators

被引:40
作者
Bazighifan, Omar [1 ,2 ]
Kumam, Poom [3 ,4 ,5 ]
机构
[1] Hadhramout Univ, Dept Math, Fac Sci, Hadhramout 50512, Yemen
[2] Seiyun Univ, Dept Math, Fac Educ, Hadhramout 50512, Yemen
[3] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[4] King Mongkuts Univ Technol Thonburi KMUTT, Dept Math, Fac Sci, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
关键词
oscillation; even-order; advanced differential equations; p-Laplacian equations; CRITERIA; BEHAVIOR;
D O I
10.3390/math8050821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main objective of this paper is to establish new oscillation results of solutions to a class of even-order advanced differential equations with ap-Laplacian like operator. The key idea of our approach is to use the Riccati transformation and the theory of comparison with first and second-order delay equations. Some examples are provided to illustrate the main results.
引用
收藏
页数:10
相关论文
共 32 条
[1]  
Agarwal RP, 2004, MATH COMPUT MODEL, V39, P1185, DOI 10.1016/j.mcm2002.11.003
[2]   Oscillation criteria for second-order retarded differential equations [J].
Agarwal, RP ;
Shieh, SL ;
Yeh, CC .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (04) :1-11
[3]   Oscillation criteria for certain nth order differential equations with deviating arguments [J].
Agarwal, RP ;
Grace, SR ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :601-622
[4]  
[Anonymous], 2020, MATHEMATICS BASEL, DOI DOI 10.3390/math8040590
[5]  
[Anonymous], 2020, SYMMETRY BASEL, DOI DOI 10.3390/SYM12030379
[6]  
Aronsson G., 1992, EUROPEAN J APPL MATH, V3, P343, DOI [10.1017/S0956792500000905, DOI 10.1017/S0956792500000905]
[7]  
Baculkov B., 2012, J. Math. Sci, V187, P387, DOI [10.1007/s10958-012-1071-1, DOI 10.1007/S10958-012-1071-1]
[8]   Improved Approach for Studying Oscillatory Properties of Fourth-Order Advanced Differential Equations withp-Laplacian Like Operator [J].
Bazighifan, Omar ;
Abdeljawad, Thabet .
MATHEMATICS, 2020, 8 (05)
[9]   An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations [J].
Bazighifan, Omar .
SYMMETRY-BASEL, 2020, 12 (04)
[10]   Improved Conditions for Oscillation of Functional Nonlinear Differential Equations [J].
Bazighifan, Omar ;
Postolache, Mihai .
MATHEMATICS, 2020, 8 (04)