Hartman-Type and Lyapunov-Type Inequalities for a Fractional Differential Equation with Fractional Boundary Conditions

被引:2
作者
Bachar, Imed [1 ]
Eltayeb, Hassan [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
D O I
10.1155/2020/8234892
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Hartman-type and Lyapunov-type inequalities for a class of Riemann-Liouville fractional boundary value problems with fractional boundary conditions. Some applications including a lower bound for the corresponding eigenvalue problem are obtained.
引用
收藏
页数:6
相关论文
共 22 条
[1]  
Abdeljawad T, 2017, ADV DIFFER EQU-NY, V2017, P1, DOI DOI 10.1186/s13662-016-1057-2
[2]  
Abdeljawad T., 2017, J INEQUAL APPL, V2017, P1
[3]   Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives [J].
Abdeljawad, Thabet ;
Agarwal, Ravi P. ;
Alzabut, Jehad ;
Jarad, Fahd ;
Ozbekler, Abdullah .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[4]   A generalized Lyapunov-type inequality in the frame of conformable derivatives [J].
Abdeljawad, Thabet ;
Alzabut, Jehad ;
Jarad, Fahd .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[5]   Positive solutions for mixed problems of singular fractional differential equations [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) :27-41
[6]   Existence of positive solution for singular fractional differential equation [J].
Bai, Zhanbing ;
Qiu, Tingting .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (07) :2761-2767
[7]  
Brown RC, 2000, MATH APPL, V518, P1
[8]  
CHENG SS, 1991, FASC MATH, V23, P25
[9]   Fractional boundary value problems and Lyapunov-type inequalities with fractional integral boundary conditions [J].
Dhar, Sougata ;
Kong, Qingkai ;
McCabe, Michael .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (43) :1-16
[10]   A Lyapunov-type inequality for a fractional boundary value problem [J].
Ferreira, Rui A. C. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) :978-984