The IR spectrum of supercritical water: Combined molecular dynamics/quantum mechanics strategy and force field for cluster sampling

被引:5
作者
Bordat, P. [1 ]
Begue, D. [1 ]
Brown, R. [1 ]
Marbeuf, A. [2 ]
Cardy, H. [1 ]
Baraille, I. [1 ]
机构
[1] Univ Pau & Pays Adour, CNRS Equipe Chim Phys, UMR 5254, IPREM, F-64053 Pau 9, France
[2] Univ Bordeaux 1, UMR 5798, Lab Onde & Mat Aquitaine, F-33405 Talence, France
关键词
quantum chemistry; molecular dynamics; water clusters; supercritical fluid; VIBRATIONAL-SPECTRA; HIGH-TEMPERATURES; AB-INITIO; LIQUID; VAPOR; H2O;
D O I
10.1002/qua.23286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supercritical water was analyzed recently as a gas of small clusters of waters linked to each other by intermolecular hydrogen-bonds, but unexpected linear conformations of clusters are required to reproduce the infra-red (IR) spectra of the supercritical state. Aiming at a better understanding of clusters in supercritical water, this work presents a strategy combining classical molecular dynamics to explore the potential energy landscape of water clusters with quantum mechanical calculation of their IR spectra. For this purpose, we have developed an accurate and flexible force field of water based on the TIP5P 5-site model. Water dimers and trimers obtained with this improved force field compare well with the quantum mechanically optimized clusters. Exploration by simulated annealing of the potential energy surface of the classical force field reveals a new trimer conformation whose IR response determined from quantum calculations could play a role in the IR spectra of supercritical water. (c) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
引用
收藏
页码:2578 / 2584
页数:7
相关论文
共 44 条
[1]   Calculation of IR frequencies and intensities in electrical and mechanical anharmonicity approximations: Application to small water clusters [J].
Begue, D. ;
Baraille, I. ;
Garrain, P. A. ;
Dargelos, A. ;
Tassaing, T. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (03)
[2]   A comparison of two methods for selecting vibrational configuration interaction spaces on a heptatomic system:: Ethylene oxide [J].
Begue, Didier ;
Gohaud, Neil ;
Pouchan, Claude ;
Cassam-Chenaie, Patrick ;
Lievin, Jacques .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (16)
[3]   The structure of supercritical heavy water as studied by neutron diffraction [J].
BellissentFunel, MC ;
Tassaing, T ;
Zhao, H ;
Beysens, D ;
Guillot, B ;
Guissani, Y .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :2942-2949
[4]   Fourth and Fifth Virial Coefficients of Polarizable Water [J].
Benjamin, Kenneth M. ;
Schultz, Andrew J. ;
Kofke, David A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (22) :7810-7815
[5]   Percolation and three-dimensional structure of supercritical water [J].
Bernabei, M. ;
Botti, A. ;
Bruni, F. ;
Ricci, M. A. ;
Soper, A. K. .
PHYSICAL REVIEW E, 2008, 78 (02)
[6]   Influence of supercritical water treatment on heavy metals in medical waste incinerator fly ash [J].
Bo, Da ;
Zhang, Fu-Shen ;
Zhao, Lijuan .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 170 (01) :66-71
[7]   Water at supercritical conditions: A first principles study [J].
Boero, M ;
Terakura, K ;
Ikeshoji, T ;
Liew, CC ;
Parrinello, M .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (05) :2219-2227
[8]  
BONDARENKO GV, 1991, MOL PHYS, V74, P639, DOI 10.1080/00268979100102481
[9]   Measurement of the Raman spectrum of liquid water [J].
Carey, DM ;
Korenowski, GM .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (07) :2669-2675
[10]   DL_POLY_2 adaptations for solvation studies [J].
Cazade, P. -A. ;
Bordat, P. ;
Baraille, I. ;
Brown, R. ;
Smith, W. ;
Todorov, I. T. .
MOLECULAR SIMULATION, 2011, 37 (01) :43-52