Mechanical properties of mineralized collagen fibrils as influenced by demineralization

被引:203
作者
Balooch, M. [1 ]
Habelitz, S. [1 ]
Kinney, J. H. [2 ]
Marshall, S. J. [1 ]
Marshall, G. W. [1 ]
机构
[1] Univ Calif San Francisco, Div Biomat & Bioengn, Dept Prevent & Restorat Dent Sci, San Francisco, CA 94143 USA
[2] Lawrence Livermore Natl Lab, Dept Mech Engn, Livermore, CA USA
关键词
collagen; mineral; atomic force microscopy; dentin; nanoindentation;
D O I
10.1016/j.jsb.2008.02.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to Study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:404 / 410
页数:7
相关论文
共 36 条
[1]   Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation [J].
Angker, L ;
Swain, MV ;
Kilpatrick, N .
JOURNAL OF BIOMECHANICS, 2005, 38 (07) :1535-1542
[2]   Influence of hydration and mechanical characterization of carious primary dentine using an ultra-micro indentation system (UMIS) [J].
Angker, L ;
Nijhof, N ;
Swain, MV ;
Kilpatrick, NM .
EUROPEAN JOURNAL OF ORAL SCIENCES, 2004, 112 (03) :231-236
[3]  
Balooch M, 1998, J BIOMED MATER RES, V40, P539, DOI 10.1002/(SICI)1097-4636(19980615)40:4<539::AID-JBM4>3.3.CO
[4]  
2-O
[5]   NEUTRON-DIFFRACTION STUDIES OF COLLAGEN IN FULLY MINERALIZED BONE [J].
BONAR, LC ;
LEES, S ;
MOOK, HA .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 181 (02) :265-270
[6]   Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus [J].
Carrillo, F ;
Gupta, S ;
Balooch, M ;
Marshall, SJ ;
Marshall, GW ;
Pruitt, L ;
Puttlitz, CM .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (10) :2820-2830
[7]   Basement membrane macromolecules: Insights from atomic force microscopy [J].
Chen, CH ;
Hansma, HG .
JOURNAL OF STRUCTURAL BIOLOGY, 2000, 131 (01) :44-55
[8]   RELATIONSHIP BETWEEN STIFFNESS AND MINERAL CONTENT OF BONE [J].
CURREY, JD .
JOURNAL OF BIOMECHANICS, 1969, 2 (04) :477-&
[9]   PHYSICAL CHARACTERISTICS AFFECTING THE TENSILE FAILURE PROPERTIES OF COMPACT-BONE [J].
CURREY, JD .
JOURNAL OF BIOMECHANICS, 1990, 23 (08) :837-844
[10]   Cooperative deformation of mineral and collagen in bone at the nanoscale [J].
Gupta, Himadri S. ;
Seto, Jong ;
Wagermaier, Wolfgang ;
Zaslansky, Paul ;
Boesecke, Peter ;
Fratzl, Peter .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (47) :17741-17746