Nonequilibrium Phase Transitions in Amorphous and Anatase TiO2 Nanotubes

被引:23
作者
Auer, Andrea [1 ]
Steiner, Dominik [1 ]
Portenkirchner, Engelbert [1 ]
Kunze-Liebhaueser, Julia [1 ]
机构
[1] Leopold Franzens Univ Innsbruck, Inst Phys Chem, Innrain 52c, A-6020 Innsbruck, Austria
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 05期
基金
奥地利科学基金会;
关键词
Li-ion intercalation; self-organized anodic TiO2 nanotubes; anode material; phase transition; bulk lithiation; LITHIUM-ION; NANOSTRUCTURED TIO2; RATE CAPABILITY; LI; PERFORMANCE; ELECTRODES; STORAGE; NANOPARTICLES; KINETICS; SURFACE;
D O I
10.1021/acsaem.7b00319
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical lithiation/delithiation behavior of self-organized amorphous and anatase titanium dioxide (TiO2) nanotubes (NTs) is analyzed by means of electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The bulk lithiation properties are governed by the different phase transitions in amorphous and anatase TiO2. While in the case of amorphous nanotubes the phase transition only leads to a thermodynamic limitation of the bulk Li content, it additionally limits the lithiation kinetics for the anatase case. This kinetic constraint is found to originate from underlithiation of the anatase TiO2-x bulk caused by the instant first phase transition during lithium insertion. Together with the surface lithiation Amorphous nanotubes are characterized by a reversible surface chemistry and thus pseudocapacitive lithiation/delithiation behavior. As a result, amorphous TiO2 nanotubes show higher overall capacities due to the contribution of surface lithiation, higher capacity retention, higher rate capability, and higher Coulombic efficiencies at high C-rates, even though at the lowest applied lithiation potential of 1.1 V, slightly more lithium is inserted into the bulk of anatase TiO2-x nanotubes under quasi steady-state conditions.
引用
收藏
页码:1924 / 1929
页数:11
相关论文
共 37 条
[1]   Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes [J].
Acevedo-Pena, Prospero ;
Haro, Marta ;
Rincon, Marina E. ;
Bisquert, Juan ;
Garcia-Belmonte, Germa .
JOURNAL OF POWER SOURCES, 2014, 268 :397-403
[2]   Preferentially Oriented TiO2 Nanotubes as Anode Material for Li-Ion Batteries: Insight into Li-Ion Storage and Lithiation Kinetics [J].
Auer, Andrea ;
Portenkirchner, Engelbert ;
Goetsch, Thomas ;
Valero-Vidal, Carlos ;
Penner, Simon ;
Kunze-Liebhaeuser, Julia .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) :36828-36836
[3]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[4]   Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects [J].
Belak, Anna A. ;
Wang, Yizhou ;
Van der Ven, Anton .
CHEMISTRY OF MATERIALS, 2012, 24 (15) :2894-2898
[5]   ANATASE AS A CATHODE MATERIAL IN LITHIUM-ORGANIC ELECTROLYTE RECHARGEABLE BATTERIES [J].
BONINO, F ;
BUSANI, L ;
LAZZARI, M ;
MANSTRETTA, M ;
RIVOLTA, B ;
SCROSATI, B .
JOURNAL OF POWER SOURCES, 1981, 6 (03) :261-270
[6]   The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase [J].
Borghols, W. J. H. ;
Lutzenkirchen-Hecht, D. ;
Haake, U. ;
van Eck, E. R. H. ;
Mulder, F. M. ;
Wagemaker, M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (27) :5742-5748
[7]   Lithium Storage in Amorphous TiO2 Nanoparticles [J].
Borghols, Wouter J. H. ;
Luetzenkirchen-Hecht, Dirk ;
Haake, Ullrich ;
Chan, Wingkee ;
Lafont, Ugo ;
Kelder, Erik M. ;
van Eck, Ernst R. H. ;
Kentgens, Arno P. M. ;
Mulder, Fokko M. ;
Wagemaker, Marnix .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (05) :A582-A588
[8]   Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes [J].
Bresser, Dominic ;
Paillard, Elie ;
Binetti, Enrico ;
Krueger, Steffen ;
Striccoli, Marinella ;
Winter, Martin ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2012, 206 :301-309
[9]   Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation [J].
Brumbarov, J. ;
Vivek, J. P. ;
Leonardi, S. ;
Valero-Vidal, C. ;
Portenkirchner, E. ;
Kunze-Liebhaeuser, J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (32) :16469-16477
[10]   The behavior of a many-particle electrode in a lithium-ion battery [J].
Dreyer, Wolfgang ;
Guhlke, Clemens ;
Huth, Robert .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (12) :1008-1019