Phase classification of multi-principal element alloys via interpretable machine learning

被引:47
|
作者
Lee, Kyungtae [1 ]
Ayyasamy, Mukil, V [1 ]
Delsa, Paige [2 ]
Hartnett, Timothy Q. [1 ]
Balachandran, Prasanna, V [1 ,3 ]
机构
[1] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[2] Univ Richmond, Dept Phys, Richmond, VA 23173 USA
[3] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
关键词
HIGH-ENTROPY ALLOYS; SOLID-SOLUTION; PREDICTION; DESIGN; 1ST-PRINCIPLES; EXPLORATION; SELECTION;
D O I
10.1038/s41524-022-00704-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is intense interest in uncovering design rules that govern the formation of various structural phases as a function of chemical composition in multi-principal element alloys (MPEAs). In this paper, we develop a machine learning (ML) approach built on the foundations of ensemble learning, post hoc model interpretability of black-box models, and clustering analysis to establish a quantitative relationship between the chemical composition and experimentally observed phases of MPEAs. The originality of our work stems from performing instance-level (or local) variable attribution analysis of ML predictions based on the breakdown method, and then identifying similar instances based on k-means clustering analysis of the breakdown results. We also complement the breakdown analysis with Ceteris Paribus profiles that showcase how the model response changes as a function of a single variable, when the values of all other variables are fixed. Results from local model interpretability analysis uncover key insights into variables that govern the formation of each phase. Our developed approach is generic, model-agnostic, and valuable to explain the insights learned by the black-box models. An interactive web application is developed to facilitate model sharing and accelerate the design of MPEAs with targeted properties.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Review: Multi-principal element alloys by additive manufacturing
    Chenze Li
    Michael Ferry
    Jamie J. Kruzic
    Xiaopeng Li
    Journal of Materials Science, 2022, 57 : 9903 - 9935
  • [42] Controlling the corrosion resistance of multi-principal element alloys
    Scully, John R.
    Inman, Samuel B.
    Gerard, Angela Y.
    Taylor, Christopher D.
    Windl, Wolfgang
    Schreiber, Daniel K.
    Lu, Pin
    Saal, James E.
    Frankel, Gerald S.
    SCRIPTA MATERIALIA, 2020, 188 (188) : 96 - 101
  • [43] Microstructural, phase, and thermophysical stability of CrMoNbV refractory multi-principal element alloys
    Shittu, Jibril
    Rietema, Connor J.
    Juhasz, Michael
    Ellyson, Benjamin
    Elder, Kate L. M.
    Bocklund, Brandon J.
    Sims, Zachary C.
    Li, Tian T.
    Henderson, Hunter B.
    Berry, Joel
    Samanta, Amit
    Voisin, Thomas
    Baker, Alexander A.
    Mccall, Scott K.
    Perron, Aurelien P.
    Mckeown, Joseph T.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 977
  • [44] Microstructural Impacts on the Oxidation of Multi-Principal Element Alloys
    Pavel, Michael J.
    Weaver, Mark L.
    HIGH TEMPERATURE CORROSION OF MATERIALS, 2024, 101 (03) : 413 - 432
  • [45] Multi-objective optimization of multi-principal element alloys via high-throughput simulation and active learning
    Mo, Runyu
    Wu, Leilei
    Wang, Gang
    Wang, Qing
    Ren, Jingli
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [46] Microstructural engineering by heat treatments of multi-principal element alloys via spinodal mediated phase transformation pathways
    Koneru S.R.
    Kadirvel K.
    Fraser H.
    Wang Y.
    Acta Materialia, 2023, 258
  • [47] Achieving ultra hard refractory multi-principal element alloys via mechanical alloying
    Smeltzer, Joshua A.
    Marvel, Christopher J.
    Hornbuckle, B. Chad
    Roberts, Anthony J.
    Marsico, Joseph M.
    Giri, Anit K.
    Darling, Kristopher A.
    Rickman, Jeffrey M.
    Chan, Helen M.
    Harmer, Martin P.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 763
  • [48] Evaluation of Calphad Approach and Empirical Rules on the Phase Stability of Multi-principal Element Alloys
    Song-Mao Liang
    Rainer Schmid-Fetzer
    Journal of Phase Equilibria and Diffusion, 2017, 38 : 369 - 381
  • [49] Microwave synthesis of single-phase nanoparticles made of multi-principal element alloys
    Wu, Siyu
    Liu, Yuzi
    Ren, Yang
    Wei, Qilin
    Sun, Yugang
    NANO RESEARCH, 2022, 15 (06) : 4886 - 4892
  • [50] Duplex phase hexagonal-cubic multi-principal element alloys with high hardness
    Derimow, N.
    MacDonald, B. E.
    Lavernia, E. J.
    Abbaschian, R.
    MATERIALS TODAY COMMUNICATIONS, 2019, 21