Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys

被引:235
作者
Kariolis, Mihalis S. [1 ]
Wells, Robert C. [1 ]
Getz, Jennifer A. [1 ]
Kwan, Wanda [1 ]
Mahon, Cathal S. [1 ]
Tong, Raymond [1 ]
Kim, Jin [1 ]
Srivastava, Ankita [1 ]
Bedard, Catherine [1 ]
Henne, Kirk R. [1 ]
Giese, Tina [1 ]
Assimon, Victoria A. [1 ]
Chen, Xiaocheng [1 ]
Zhang, Yin [1 ]
Solanoy, Hilda [1 ]
Jenkins, Katherine [1 ]
Sanchez, Pascal E. [1 ]
Kane, Lesley [1 ]
Miyamoto, Takashi [1 ]
Chew, Kylie S. [1 ]
Pizzo, Michelle E. [1 ]
Liang, Nicholas [1 ]
Calvert, Meredith E. K. [1 ]
DeVos, Sarah L. [1 ]
Baskaran, Sulochanadevi [1 ]
Hall, Sejal [1 ,2 ]
Sweeney, Zachary K. [1 ]
Thorne, Robert G. [1 ]
Watts, Ryan J. [1 ]
Dennis, Mark S. [1 ]
Silverman, Adam P. [1 ]
Zuchero, Y. Joy Yu [1 ]
机构
[1] Denali Therapeut Inc, 161 Oyster Point Blvd, San Francisco, CA 94080 USA
[2] Audentes Therapeut, 600 Calif St, San Francisco, CA 94108 USA
关键词
TRANSFERRIN RECEPTOR; STRUCTURAL LOOPS; DRUG-DELIVERY; ANTIBODY; IMMUNOGLOBULIN; DOMAINS; TRANSCYTOSIS; DIFFUSION; NERVE;
D O I
10.1126/scitranslmed.aay1359
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Effective delivery of protein therapeutics to the central nervous system (CNS) has been greatly restricted by the blood-brain barrier (BBB). We describe the development of a BBB transport vehicle (TV) comprising an engineered Fc fragment that exploits receptor-mediated transcytosis for CNS delivery of biotherapeutics by binding a highly expressed brain endothelial cell target. TVs were engineered using directed evolution to bind the apical domain of the human transferrin receptor (hTfR) without the use of amino acid insertions, deletions, or unnatural appendages. A crystal structure of the TV-TfR complex revealed the TV binding site to be away from transferrin and FcRn binding sites, which was further confirmed experimentally in vitro and in vivo. Recombinant expression of TVs fused to anti-beta-secretase (BACE1) Fabs yielded antibody transport vehicle (ATV) molecules with native immunoglobulin G (IgG) structure and stability. Peripheral administration of anti-BACE1 ATVs to hTfR-engineered mice and cynomolgus monkeys resulted in substantially improved CNS uptake and sustained pharmacodynamic responses. The TV platform readily accommodates numerous additional configurations, including bispecific antibodies and protein fusions, yielding a highly modular CNS delivery platform.
引用
收藏
页数:13
相关论文
共 67 条
[1]   The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? [J].
Abbott, N. Joan ;
Pizzo, Michelle E. ;
Preston, Jane E. ;
Janigro, Damir ;
Thorne, Robert G. .
ACTA NEUROPATHOLOGICA, 2018, 135 (03) :387-407
[2]   Highly Avid Magnetic Bead Capture: An Efficient Selection Method for de novo Protein Engineering Utilizing Yeast Surface Display [J].
Ackerman, Margaret ;
Levary, David ;
Tobon, Gabriel ;
Hackel, Benjamin ;
Orcutt, Kelly Davis ;
Wittrup, K. Dane .
BIOTECHNOLOGY PROGRESS, 2009, 25 (03) :774-783
[3]   INTRACELLULAR POOLS OF TRANSFERRIN RECEPTORS RESULT FROM CONSTITUTIVE INTERNALIZATION OF UNOCCUPIED RECEPTORS [J].
AJIOKA, RS ;
KAPLAN, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (17) :6445-6449
[4]   A Therapeutic Antibody Targeting BACE1 Inhibits Amyloid-β Production in Vivo [J].
Atwal, Jasvinder K. ;
Chen, Yongmei ;
Chiu, Cecilia ;
Mortensen, Deborah L. ;
Meilandt, William J. ;
Liu, Yichin ;
Heise, Christopher E. ;
Hoyte, Kwame ;
Luk, Wilman ;
Lu, Yanmei ;
Peng, Kun ;
Wu, Ping ;
Rouge, Lionel ;
Zhang, Yingnan ;
Lazarus, Robert A. ;
Scearce-Levie, Kimberly ;
Wang, Weiru ;
Wu, Yan ;
Tessier-Lavigne, Marc ;
Watts, Ryan J. .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (84)
[5]   Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier [J].
Boado, Ruben J. ;
Zhang, Yufeng ;
Zhang, Yun ;
Pardridge, William M. .
BIOTECHNOLOGY AND BIOENGINEERING, 2007, 96 (02) :381-391
[6]   Isolating and engineering human antibodies using yeast surface display [J].
Chao, Ginger ;
Lau, Wai L. ;
Hackel, Benjamin J. ;
Sazinsky, Stephen L. ;
Lippow, Shaun M. ;
Wittrup, K. Dane .
NATURE PROTOCOLS, 2006, 1 (02) :755-768
[7]   The Molecular Constituents of the Blood-Brain Barrier [J].
Chow, Brian Wai ;
Gu, Chenghua .
TRENDS IN NEUROSCIENCES, 2015, 38 (10) :598-608
[8]   An Overview of APP Processing Enzymes and Products [J].
Chow, Vivian W. ;
Mattson, Mark P. ;
Wong, Philip C. ;
Gleichmann, Marc .
NEUROMOLECULAR MEDICINE, 2010, 12 (01) :1-12
[9]   Addressing Safety Liabilities of TfR Bispecific Antibodies That Cross the Blood-Brain Barrier [J].
Couch, Jessica A. ;
Yu, Y. Joy ;
Zhang, Yin ;
Tarrant, Jacqueline M. ;
Fuji, Reina N. ;
Meilandt, William J. ;
Solanoy, Hilda ;
Tong, Raymond K. ;
Hoyte, Kwame ;
Luk, Wilman ;
Lu, Yanmei ;
Gadkar, Kapil ;
Prabhu, Saileta ;
Ordonia, Benjamin A. ;
Quyen Nguyen ;
Lin, Yuwen ;
Lin, Zhonghua ;
Balazs, Mercedesz ;
Scearce-Levie, Kimberly ;
Ernst, James A. ;
Dennis, Mark S. ;
Watts, Ryan J. .
SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (183)
[10]   The Blood-Brain Barrier [J].
Daneman, Richard ;
Prat, Alexandre .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2015, 7 (01)