Role of delay for the symmetry in the dynamics of networks

被引:17
作者
D'Huys, O. [1 ]
Fischer, I. [2 ]
Danckaert, J. [1 ]
Vicente, R. [3 ,4 ]
机构
[1] Vrije Univ Brussel, Appl Phys Res Grp APHY, B-1050 Brussels, Belgium
[2] Univ Islas Baleares, Consejo Super Invest Cient, Inst Fis Interdisciplinar & Sistemas Complejos, E-07122 Palma de Mallorca, Spain
[3] Max Planck Inst Brain Res, D-60528 Frankfurt, Germany
[4] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 04期
关键词
OPTICAL FEEDBACK; SEMICONDUCTOR-LASERS; HOPF-BIFURCATION; BREAKING; CHAOS; SYNCHRONIZATION; STABILIZATION;
D O I
10.1103/PhysRevE.83.046223
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The symmetry in a network of oscillators determines the spatiotemporal patterns of activity that can emerge. We study how a delay in the coupling affects symmetry-breaking and -restoring bifurcations. We are able to draw general conclusions in the limit of long delays. For one class of networks we derive a criterion that predicts that delays have a symmetrizing effect. Moreover, we demonstrate that for any network admitting a steady-state solution, a long delay can solely advance the first bifurcation point as compared to the instantaneous-coupling regime.
引用
收藏
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 2003, The Symmetry Perspective
[2]  
Averitt RD, 2010, NAT PHYS, V6, P639, DOI 10.1038/nphys1768
[3]   Synchronization in semiconductor laser rings [J].
Buldu, Javier Martin ;
Torrent, M. C. ;
Garcia-Ojalvo, Jordi .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (06) :1549-1554
[4]   Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling [J].
Campbell, SA ;
Yuan, Y ;
Bungay, SD .
NONLINEARITY, 2005, 18 (06) :2827-2846
[5]   Stability of genetic regulatory networks with time delay [J].
Chen, LN ;
Aihara, K .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (05) :602-608
[6]   Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states [J].
Choe, Chol-Ung ;
Dahms, Thomas ;
Hoevel, Philipp ;
Schoell, Eckehard .
PHYSICAL REVIEW E, 2010, 81 (02)
[7]   COUPLED NONLINEAR OSCILLATORS AND THE SYMMETRIES OF ANIMAL GAITS [J].
COLLINS, JJ ;
STEWART, IN .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (03) :349-392
[8]   Amplitude and phase effects on the synchronization of delay-coupled oscillators [J].
D'Huys, O. ;
Vicente, R. ;
Danckaert, J. ;
Fischer, I. .
CHAOS, 2010, 20 (04)
[9]   Transitions to synchrony in coupled bursting neurons [J].
Dhamala, M ;
Jirsa, VK ;
Ding, MZ .
PHYSICAL REVIEW LETTERS, 2004, 92 (02) :4
[10]   Zero Lag Synchronization of Chaotic Systems with Time Delayed Couplings [J].
Englert, A. ;
Kinzel, W. ;
Aviad, Y. ;
Butkovski, M. ;
Reidler, I. ;
Zigzag, M. ;
Kanter, I. ;
Rosenbluh, M. .
PHYSICAL REVIEW LETTERS, 2010, 104 (11)