On the Camassa-Holm and Hunter-Saxton equations

被引:2
作者
Holden, H [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
来源
European Congress of Mathematics | 2005年
关键词
Camassa-Holm equation; Hunter-Saxton equation;
D O I
10.4171/009-1/12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey recent results for the Camassa-Holm equation u(t) - u(xx)t + 2 kappa u(x) + 3uu(x) - 2u(x)u(xx) - uu(xxx) = 0, in particular convergence of a carefully selected finite difference scheme in the case of periodic initial data, and a detailed description of algebro-geometric solutions of the Camassa-Holm hierarchy. Furthermore, we present results for the generalized hyperelastic-rod wave equation u(t) -u(xxt) + 1/2 g(u)(x) = gamma(2u(x)u(xx) + uu(xxx)). Finally, we discuss convergence of finite difference schemes for the Hunter-Saxton equation (u(t) + uu(x))(x) = 1/2 (u(x))(2) and describe semi-discrete, implicit as well as explicit upwind schemes that converge to diffusive solutions of the Hunter-Saxton equation.
引用
收藏
页码:173 / 200
页数:28
相关论文
共 52 条
[1]  
Alber M., 2000, CRM P LECT NOTES, V25, P1
[2]   ON THE LINK BETWEEN UMBILIC GEODESICS AND SOLITON-SOLUTIONS OF NONLINEAR PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 450 (1940) :677-692
[3]   THE GEOMETRY OF PEAKED SOLITONS AND BILLIARD SOLUTIONS OF A CLASS OF INTEGRABLE PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) :137-151
[4]  
Alber MS, 2000, INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, P213
[5]   Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians [J].
Alber, MS ;
Fedorov, YN .
INVERSE PROBLEMS, 2001, 17 (04) :1017-1042
[6]   Wave solutions of evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians [J].
Alber, MS ;
Fedorov, YN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47) :8409-8425
[7]   The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE's of shallow water and dym type [J].
Alber, MS ;
Camassa, R ;
Fedorov, YN ;
Holm, DD ;
Marsden, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (01) :197-227
[8]   On billiard solutions of nonlinear PDEs [J].
Alber, MS ;
Camassa, R ;
Fedorov, YN ;
Holm, DD ;
Marsden, JE .
PHYSICS LETTERS A, 1999, 264 (2-3) :171-178
[9]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[10]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0