PURE-LET DECONVOLUTION OF 3D FLUORESCENCE MICROSCOPY IMAGES

被引:0
|
作者
Li, Jizhou [1 ]
Luisier, Florian [2 ]
Blu, Thierry [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Roche Diagnost Hematol, Boston, MA USA
关键词
3D deconvolution; fluorescence microscopy; Poisson noise; unbiased risk estimate; RICHARDSON-LUCY ALGORITHM; STRUCTURED ILLUMINATION; RESTORATION; RECONSTRUCTION; REGULARIZATION; NOISE;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Three-dimensional (3D) deconvolution microscopy is very effective in improving the quality of fluorescence microscopy images. In this work, we present an efficient approach for the deconvolution of 3D fluorescence microscopy images based on the recently developed PURE-LET algorithm. By combining multiple Wiener filtering and wavelet denoising, we parametrize the deconvolution process as a linear combination of elementary functions. Then the Poisson unbiased risk estimate (PURE) is used to obtain the optimal coefficients. The proposed approach is non-iterative and outperforms existing techniques (usually, variants of Richardson-Lucy algorithm) both in terms of computational efficiency and quality. We illustrate its effectiveness on both synthetic and real data.
引用
收藏
页码:723 / 727
页数:5
相关论文
共 50 条
  • [21] A "LEARN 2D, APPLY 3D" METHOD FOR 3D DECONVOLUTION MICROSCOPY
    Soulez, Ferreol
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 1075 - 1078
  • [22] Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy
    Boyoung Kim
    Takeshi Naemura
    Scientific Reports, 5
  • [23] Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy
    Kim, Boyoung
    Naemura, Takeshi
    SCIENTIFIC REPORTS, 2015, 5
  • [24] Self-Supervised Segmentation of 3D Fluorescence Microscopy Images Using CycleGAN
    Rosa, Alice
    Narotamo, Hemaxi
    Silveira, Margarida
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [25] ACQUIARIUM: FREE SOFTWARE FOR THE ACQUISITION AND ANALYSIS OF 3D IMAGES OF CELLS IN FLUORESCENCE MICROSCOPY
    Matula, Pavel
    Maska, Martin
    Danek, Ondrej
    Matula, Petr
    Kozubek, Michal
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1138 - 1141
  • [26] Automated pollen recognition using 3D volume images from fluorescence microscopy
    Ronneberger O.
    Schultz E.
    Burkhardt H.
    Aerobiologia, 2002, 18 (2) : 107 - 115
  • [27] 3D SEGMENTATION AND QUANTIFICATION OF MOUSE EMBRYONIC STEM CELLS IN FLUORESCENCE MICROSCOPY IMAGES
    Harder, Nathalie
    Bodnar, Megan
    Eils, Roland
    Spector, David L.
    Rohr, Karl
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 216 - 219
  • [28] 3D multi-energy deconvolution electron microscopy
    de Goede, Michiel
    Johlin, Eric
    Sciacca, Beniamino
    Boughorbel, Faysal
    Garnett, Erik C.
    NANOSCALE, 2017, 9 (02) : 684 - 689
  • [29] Deconvolution of 3D fluorescence micrographs with automatic risk minimization
    Ramani, Sathish
    Vonesch, Cedric
    Unser, Michael
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 732 - 735
  • [30] HIGH-PERFORMANCE 3D DECONVOLUTION OF FLUORESCENCE MICROGRAPHS
    Kromwijk, Sander
    Lefkimmiatis, Stamatios
    Unser, Michael
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1718 - 1722