PURE-LET DECONVOLUTION OF 3D FLUORESCENCE MICROSCOPY IMAGES

被引:0
|
作者
Li, Jizhou [1 ]
Luisier, Florian [2 ]
Blu, Thierry [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Roche Diagnost Hematol, Boston, MA USA
关键词
3D deconvolution; fluorescence microscopy; Poisson noise; unbiased risk estimate; RICHARDSON-LUCY ALGORITHM; STRUCTURED ILLUMINATION; RESTORATION; RECONSTRUCTION; REGULARIZATION; NOISE;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Three-dimensional (3D) deconvolution microscopy is very effective in improving the quality of fluorescence microscopy images. In this work, we present an efficient approach for the deconvolution of 3D fluorescence microscopy images based on the recently developed PURE-LET algorithm. By combining multiple Wiener filtering and wavelet denoising, we parametrize the deconvolution process as a linear combination of elementary functions. Then the Poisson unbiased risk estimate (PURE) is used to obtain the optimal coefficients. The proposed approach is non-iterative and outperforms existing techniques (usually, variants of Richardson-Lucy algorithm) both in terms of computational efficiency and quality. We illustrate its effectiveness on both synthetic and real data.
引用
收藏
页码:723 / 727
页数:5
相关论文
共 50 条
  • [1] DECONVOLUTION OF POISSONIAN IMAGES WITH THE PURE-LET APPROACH
    Li, Jizhou
    Luisier, Florian
    Blu, Thierry
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2708 - 2712
  • [2] PURE-LET Image Deconvolution
    Li, Jizhou
    Luisier, Florian
    Blu, Thierry
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 92 - 105
  • [3] Deconvolution of 3D Fluorescence Microscopy Images Using Graphics Processing Units
    D'Amore, Luisa
    Marcellino, Livia
    Mele, Valeria
    Romano, Diego
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2012, 7203 : 690 - 699
  • [4] Deconvolution methods for 3-D fluorescence microscopy images
    Sarder, P
    Nehorai, A
    IEEE SIGNAL PROCESSING MAGAZINE, 2006, 23 (03) : 32 - 45
  • [5] SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos
    Sylvain Prigent
    Hoai-Nam Nguyen
    Ludovic Leconte
    Cesar Augusto Valades-Cruz
    Bassam Hajj
    Jean Salamero
    Charles Kervrann
    Scientific Reports, 13 (1)
  • [6] SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos
    Prigent, Sylvain
    Nguyen, Hoai-Nam
    Leconte, Ludovic
    Valades-Cruz, Cesar Augusto
    Hajj, Bassam
    Salamero, Jean
    Kervrann, Charles
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [7] BLIND DECONVOLUTION OF 3D DATA IN WIDE FIELD FLUORESCENCE MICROSCOPY
    Soulez, Ferreol
    Denis, Loic
    Tourneur, Yves
    Thiebaut, Eric
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1735 - 1738
  • [8] AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES
    Kong, Jun
    Wang, Fusheng
    Teodoro, George
    Liang, Yanhui
    Zhu, Yangyang
    Tucker-Burden, Carol
    Brat, Daniel J.
    2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, : 1212 - 1215
  • [9] TEXTURE ANALYSIS OF 3D FLUORESCENCE MICROSCOPY IMAGES USING RSURF 3D FEATURES
    Stoklasa, Roman
    Majtner, Tomas
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1212 - 1216
  • [10] Contribution of data pre-processing to deconvolution of 3-D fluorescence microscopy images
    De Meyer, Arnaud
    Colicchio, Bruno
    De Mey, Jan
    Jung, Georges
    Dieterlen, Alain
    Haeberle, Olivier
    Jacquey, Serge
    BIOPHOTONICS AND NEW THERAPY FRONTIERS, 2006, 6191