共 50 条
Rational combinatorial design of pore-forming β-sheet peptides
被引:64
|作者:
Rausch, JM
Marks, JR
Wimley, WC
[1
]
机构:
[1] Tulane Univ, Hlth Sci Ctr, Dept Biochem, New Orleans, LA 70112 USA
[2] Tulane Univ, Hlth Sci Ctr, Interdisciplinary Program Mol & Cellular Biol, New Orleans, LA 70112 USA
来源:
关键词:
high throughput;
antimicrobial;
self-assembly;
D O I:
10.1073/pnas.0502013102
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Exogenous polypeptides that self-assemble on biological membranes into pores are abundant and structurally diverse, functioning as transporters, toxins, ion channels, and antibiotics. A means for designing novel pore-forming sequences would unlock new opportunities for the development and engineering of protein function in membranes. Toward this goal, we designed a 9,604-member rational combinatorial peptide library based on the structural principles of known membrane-spanning P-sheets. When the library was screened under stringent conditions for sequences with pore-forming activity, a single active motif was found, which is characterized by aromatic residues at the lipid-exposed interfacial positions and basic residues in the pore-lining portion of the sequence. Peptides with this motif assembled on bilayer membranes into beta-sheets and formed transient peptide/lipid pores of approximate to 1-nm diameter. The mechanism of action is very similar to that of natural, pore-forming peptides. These methods provide a powerful means for selecting and engineering novel pore-forming sequences and will open prospects for designing peptide antibiotics, biosensors, and new membrane protein structures.
引用
收藏
页码:10511 / 10515
页数:5
相关论文