Constrained Lagrangian dissipative contact dynamics

被引:10
作者
de Leon, Manuel [1 ]
Lainz, Manuel [2 ]
Munoz-Lecanda, Miguel C. [3 ]
Roman-Roy, Narciso [3 ]
机构
[1] Consejo Super Invest Cient & Real Acad Ciencias, Inst Ciencias Matemat, Madrid, Spain
[2] CSIC, Inst Ciencias Matemat, Madrid, Spain
[3] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
关键词
SYSTEMS; EQUIVALENCE; GEOMETRY;
D O I
10.1063/5.0071236
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the contact dynamics obtained from the Herglotz variational principle can be described as a constrained nonholonomic or vakonomic ordinary Lagrangian system depending on a dissipative variable with an adequate choice of one constraint. As a consequence, we obtain the dynamics of contact nonholonomic and vakonomic systems as an ordinary variational calculus with constraints on a Lagrangian with a dissipative variable. The variation of the energy and the other dissipative quantities is also obtained, giving the usual results.
引用
收藏
页数:23
相关论文
共 54 条
[11]   Contact Hamiltonian mechanics [J].
Bravetti, Alessandro ;
Cruz, Hans ;
Tapias, Diego .
ANNALS OF PHYSICS, 2017, 376 :17-39
[12]   ORIGIN OF THE LAGRANGIAN CONSTRAINTS AND THEIR RELATION WITH THE HAMILTONIAN-FORMULATION [J].
CARINENA, JF ;
LOPEZ, C ;
ROMANROY, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (05) :1143-1149
[13]   Nonstandard Hamiltonian structures of the Lienard equation and contact geometry [J].
Carinena, Jose F. ;
Guha, Partha .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16
[14]   Contact manifolds and dissipation, classical and quantum [J].
Ciaglia, F. M. ;
Cruz, H. ;
Marmo, G. .
ANNALS OF PHYSICS, 2018, 398 :159-179
[15]   GEOMETRIC DESCRIPTION OF VAKONOMIC AND NONHOLONOMIC DYNAMICS. COMPARISON OF SOLUTIONS [J].
Cortes, J. ;
de Leon, M. ;
Martin de Diego, D. ;
Martinez, S. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (05) :1389-1412
[16]   TANGENT BUNDLE GEOMETRY FOR LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :3755-3772
[17]  
Crampin M., 1986, LMS LECT NOTES SERIE, V59
[18]   Vakonomic mechanics versus non-holonomic mechanics: a unified geometrical approach [J].
de Leon, M ;
Marrero, JC ;
de Diego, DM .
JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (2-3) :126-144
[19]  
de Leon M., 1989, N HOLLAND MATH STUDI, V158
[20]  
de Leon M., 2021, ARXIV200614326MATHOC