Deriving optimal silicon neuron circuit specifications using Data Assimilation

被引:3
作者
Donati, Elisa [1 ,2 ]
Abu Hassan, Kamal [3 ]
Nogaret, Alain [3 ]
Indiveri, Giacomo [1 ,2 ]
机构
[1] Univ Zurich, Inst Neuroinformat, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
来源
2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2018年
基金
欧盟地平线“2020”;
关键词
NETWORK;
D O I
10.1109/ISCAS.2018.8351338
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mixed signal neuromorphic circuits represent a promising technology for implementing compact and ultra-low power prosthetic devices that can be directly interfaced to living tissue. However, to accurately emulate the dynamical behavior of the biological tissue, it is necessary to determine the optimal set of specifications and bias parameters for these circuits. In this paper we show how this can be done for a silicon neuron design, by applying a statistical Data Assimilation method (DA). We present a conductance-based silicon neuron based on the Mahowald-Douglas (MD) design and use the DA method to estimate its state variables and the ion channels parameters, so that it can accurately emulate the properties of biological neurons involved in the Central Pattern Generators (CPGs) responsible for producing the respiratory and heart-rate rhythms. While previous work has shown how DA well-estimates and predicts parameters from membrane voltage measurements using a semi-empirical Hodgkin-Huxley neural model, here we show how the same method is suitable for simplified Very Large Scale Integration (VLSI) circuit designs and demonstrate how it allows us to reliably predict the response of the MD neuron to different input current profiles.
引用
收藏
页数:5
相关论文
共 18 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]   Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems [J].
Chicca, Elisabetta ;
Stefanini, Fabio ;
Bartolozzi, Chiara ;
Indiveri, Giacomo .
PROCEEDINGS OF THE IEEE, 2014, 102 (09) :1367-1388
[3]  
Delbruck T, 2010, IEEE INT SYMP CIRC S, P1647, DOI 10.1109/ISCAS.2010.5537475
[4]  
Donati E, 2016, P IEEE RAS-EMBS INT, P1364, DOI 10.1109/BIOROB.2016.7523822
[5]  
Donati E, 2014, BIOMED CIRC SYST C, P512, DOI 10.1109/BioCAS.2014.6981775
[6]  
Gelman A., 2020, Data analysis using regression and multilevel/hierarchical models
[7]   A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE [J].
HODGKIN, AL ;
HUXLEY, AF .
JOURNAL OF PHYSIOLOGY-LONDON, 1952, 117 (04) :500-544
[8]   Frontiers in neuromorphic engineering [J].
Indiveri, Giacomo ;
Horiuchi, Timothy K. .
FRONTIERS IN NEUROSCIENCE, 2011, 5
[9]   Simple model of spiking neurons [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06) :1569-1572
[10]   A SILICON NEURON [J].
MAHOWALD, M ;
DOUGLAS, R .
NATURE, 1991, 354 (6354) :515-518