Estimating glycosaminoglycan-protein interaction affinity: water dominates the specific antithrombin-heparin interaction

被引:17
作者
Sarkar, Aurijit [1 ,2 ,3 ]
Yu, Wenbo [4 ]
Desai, Umesh R. [2 ,3 ]
MacKerell, Alexander D. [4 ]
Mosier, Philip D. [2 ,3 ]
机构
[1] High Point Univ, Fred Wilson Sch Pharm, Dept Basic Pharmaceut Sci, One Univ Pkwy, High Point, NC 27268 USA
[2] Virginia Commonwealth Univ, Dept Med Chem, Sch Pharm, POB 980133, Richmond, VA 23298 USA
[3] Virginia Commonwealth Univ, Inst Struct Biol Drug Discovery & Dev, Sch Pharm, POB 980133, Richmond, VA 23298 USA
[4] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, Baltimore, MD 21201 USA
基金
美国国家卫生研究院;
关键词
CHARMM; desolvation; free-energy perturbation; molecular dynamics; specificity; FREE-ENERGY CALCULATIONS; BINDING SITES; FORCE-FIELD; PENTASACCHARIDE BINDING; MOLECULAR-DYNAMICS; DRUG DISCOVERY; SULFATE; ACTIVATION; IDENTIFICATION; PROTEOGLYCANS;
D O I
10.1093/glycob/cww073
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glycosaminoglycan (GAG)-protein interactions modulate many important biological processes. Structure-function studies on GAGs may reveal probes and drugs, but their structural complexity and highly acidic nature confound such work. Productivity will increase if we are able to identify tight-binding oligosaccharides in silico. An extension of the CHARMM force field is presented to enable modeling of polysaccharides containing sulfamate functionality, and is used to develop a reliable alchemical free-energy perturbation protocol that estimates changes in affinity for the prototypical heparin-antithrombin system to within 2.3 kcal/mol using modest simulation times. Inclusion of water is crucial during simulation as solvation energy was equal in magnitude to the sum of all other thermodynamic factors. In summary, we have identified and optimized a reliable method for estimation of GAG-protein binding affinity, and shown that solvation is a crucial component in GAG-protein interactions.
引用
收藏
页码:1041 / 1047
页数:7
相关论文
共 44 条
  • [1] Diverse Functions of Glycosaminoglycans in Infectious Diseases
    Aquino, Rafael S.
    Lee, Eui Seung
    Park, Pyong Woo
    [J]. GLYCOSAMINOGLYCANS IN DEVELOPMENT, HEALTH AND DISEASE, 2010, 93 : 373 - 394
  • [2] Lysine 114 of antithrombin is of crucial importance for the affinity and kinetics of heparin pentasaccharide binding
    Arocas, V
    Bock, SC
    Raja, S
    Olson, ST
    Björk, I
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (47) : 43809 - 43817
  • [3] EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA
    BENNETT, CH
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) : 245 - 268
  • [4] Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles
    Best, Robert B.
    Zhu, Xiao
    Shim, Jihyun
    Lopes, Pedro E. M.
    Mittal, Jeetain
    Feig, Michael
    MacKerell, Alexander D., Jr.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3257 - 3273
  • [5] AVOIDING SINGULARITIES AND NUMERICAL INSTABILITIES IN FREE-ENERGY CALCULATIONS BASED ON MOLECULAR SIMULATIONS
    BEUTLER, TC
    MARK, AE
    VANSCHAIK, RC
    GERBER, PR
    VANGUNSTEREN, WF
    [J]. CHEMICAL PHYSICS LETTERS, 1994, 222 (06) : 529 - 539
  • [6] Chemoenzymatically Prepared Heparan Sulfate Containing Rare 2-O-Sulfonated Glucuronic Acid Residues
    Boothello, Rio S.
    Sarkar, Aurijit
    Vy My Tran
    Thao Kim Nu Nguyen
    Sankaranarayanan, Nehru Viji
    Mehta, Akul Y.
    Alabbas, AlHumaidi
    Brown, Spencer
    Rossi, Alessandro
    Joice, April C.
    Mencio, Caitlin P.
    Quintero, Maritza V.
    Kuberan, Balagurunathan
    Desai, Umesh R.
    [J]. ACS CHEMICAL BIOLOGY, 2015, 10 (06) : 1485 - 1494
  • [7] Role of arginine 129 in heparin binding and activation of antithrombin
    Desai, U
    Swanson, R
    Bock, SC
    Björk, I
    Olson, ST
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (25) : 18976 - 18984
  • [8] Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-β-d-glucuronidase (heparanase)
    Gandhi, Neha S.
    Freeman, Craig
    Parish, Christopher R.
    Mancera, Ricardo L.
    [J]. GLYCOBIOLOGY, 2012, 22 (01) : 35 - 55
  • [9] Free energy calculations of glycosaminoglycan-protein interactions
    Gandhi, Neha S.
    Mancera, Ricardo L.
    [J]. GLYCOBIOLOGY, 2009, 19 (10) : 1103 - 1115
  • [10] Standard Binding Free Energies from Computer Simulations: What Is the Best Strategy?
    Gumbart, James C.
    Roux, Benoit
    Chipot, Christophe
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (01) : 794 - 802